OpenRBC: A Fast Simulator of Red Blood Cells at Protein Resolution

We present OpenRBC, a coarse-grained molecular dynamics code, which is capable of performing an unprecedented in silico experiment-simulating an entire mammal red blood cell lipid bilayer and cytoskeleton as modeled by multiple millions of mesoscopic particles-using a single shared memory commodity workstation. To achieve this, we invented an adaptive spatial-searching algorithm to accelerate the computation of short-range pairwise interactions in an extremely sparse three-dimensional space. The algorithm is based on a Voronoi partitioning of the point cloud of coarse-grained particles, and is continuously updated over the course of the simulation. The algorithm enables the construction of the key spatial searching data structure in our code, i.e., a lattice-free cell list, with a time and space cost linearly proportional to the number of particles in the system. The position and the shape of the cells also adapt automatically to the local density and curvature. The code implements OpenMP parallelization and scales to hundreds of hardware threads. It outperforms a legacy simulator by almost an order of magnitude in time-to-solution and >40 times in problem size, thus providing, to our knowledge, a new platform for probing the biomechanics of red blood cells.

[1]  Yongkeun Park,et al.  Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.

[2]  George Em Karniadakis,et al.  Patient-specific blood rheology in sickle-cell anaemia , 2016, Interface Focus.

[3]  H. Yuan,et al.  Lennard-Jones type pair-potential method for coarse-grained lipid bilayer membrane simulations in LAMMPS , 2017, Comput. Phys. Commun..

[4]  He Li,et al.  Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. , 2014, Biophysical journal.

[5]  George E. Karniadakis,et al.  Accelerating dissipative particle dynamics simulations on GPUs: Algorithms, numerics and applications , 2013, Comput. Phys. Commun..

[6]  He Li,et al.  Computational Biomechanics of Human Red Blood Cells in Hematological Disorders. , 2017, Journal of biomechanical engineering.

[7]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[8]  S. Feller,et al.  Molecular dynamics simulations of lipid bilayers , 2000 .

[9]  Victor S-Y Lin,et al.  Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. , 2011, ACS nano.

[10]  Leonor Saiz,et al.  Towards an Understanding of Complex Biological Membranes from Atomistic Molecular Dynamics Simulations , 2002, Bioscience reports.

[11]  E. Evans,et al.  Bending resistance and chemically induced moments in membrane bilayers. , 1974, Biophysical journal.

[12]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[13]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[14]  Herbert Edelsbrunner Voronoi and Delaunay Diagrams , 2014 .

[15]  Subra Suresh,et al.  Multiscale Modeling of Red Blood Cell Mechanics and Blood Flow in Malaria , 2011, PLoS Comput. Biol..

[16]  Malte Kelm,et al.  Circulating Blood Endothelial Nitric Oxide Synthase Contributes to the Regulation of Systemic Blood Pressure and Nitrite Homeostasis , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[17]  Greg Huber,et al.  Fluid-membrane tethers: minimal surfaces and elastic boundary layers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  George Em Karniadakis,et al.  Predicting the morphology of sickle red blood cells using coarse-grained models of intracellular aligned hemoglobin polymers. , 2012, Soft matter.

[19]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[20]  Bradley F. Chmelka,et al.  Current Opinion in Colloid & Interface Science , 2009 .

[21]  D P Tieleman,et al.  A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. , 1997, Biochimica et biophysica acta.

[22]  Subra Suresh,et al.  Lipid bilayer and cytoskeletal interactions in a red blood cell , 2013, Proceedings of the National Academy of Sciences.

[23]  George Lykotrafitis,et al.  Modeling of band-3 protein diffusion in the normal and defective red blood cell membrane. , 2016, Soft matter.

[24]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[25]  He Li,et al.  Vesiculation of healthy and defective red blood cells. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[27]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[28]  Kim Parker,et al.  Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence. , 2008, Biophysical journal.

[29]  Massimo Bernaschi,et al.  The in-silico lab-on-a-chip: petascale and high-throughput simulations of microfluidics at cell resolution , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.

[30]  Zhen Li,et al.  Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers , 2014, J. Comput. Phys..

[31]  M. Klein,et al.  Constant-pressure molecular dynamics investigation of cholesterol effects in a dipalmitoylphosphatidylcholine bilayer. , 1998, Biophysical journal.

[32]  David Daly,et al.  The cache and memory subsystems of the IBM POWER8 processor , 2015, IBM J. Res. Dev..

[33]  Martin Lenz,et al.  ATP-dependent mechanics of red blood cells , 2009, Proceedings of the National Academy of Sciences.

[34]  Feng Feng,et al.  Finite element modeling of lipid bilayer membranes , 2006, J. Comput. Phys..

[35]  M. L. Ellsworth,et al.  Deformation-induced ATP release from red blood cells requires CFTR activity. , 1998, American journal of physiology. Heart and circulatory physiology.