OpenRBC: A Fast Simulator of Red Blood Cells at Protein Resolution
暂无分享,去创建一个
He Li | Lu Lu | George E. Karniadakis | Leopold Grinberg | Vipin Sachdeva | Constantinos Evangelinos | Yu-Hang Tang | G. Karniadakis | L. Grinberg | Yu-Hang Tang | He Li | C. Evangelinos | V. Sachdeva | L. Lu | Lu Lu | Vipin Sachdeva | Leopold Grinberg
[1] Yongkeun Park,et al. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.
[2] George Em Karniadakis,et al. Patient-specific blood rheology in sickle-cell anaemia , 2016, Interface Focus.
[3] H. Yuan,et al. Lennard-Jones type pair-potential method for coarse-grained lipid bilayer membrane simulations in LAMMPS , 2017, Comput. Phys. Commun..
[4] He Li,et al. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. , 2014, Biophysical journal.
[5] George E. Karniadakis,et al. Accelerating dissipative particle dynamics simulations on GPUs: Algorithms, numerics and applications , 2013, Comput. Phys. Commun..
[6] He Li,et al. Computational Biomechanics of Human Red Blood Cells in Hematological Disorders. , 2017, Journal of biomechanical engineering.
[7] W. Helfrich. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.
[8] S. Feller,et al. Molecular dynamics simulations of lipid bilayers , 2000 .
[9] Victor S-Y Lin,et al. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. , 2011, ACS nano.
[10] Leonor Saiz,et al. Towards an Understanding of Complex Biological Membranes from Atomistic Molecular Dynamics Simulations , 2002, Bioscience reports.
[11] E. Evans,et al. Bending resistance and chemically induced moments in membrane bilayers. , 1974, Biophysical journal.
[12] Berk Hess,et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .
[13] Bernard Chazelle,et al. Shape distributions , 2002, TOGS.
[14] Herbert Edelsbrunner. Voronoi and Delaunay Diagrams , 2014 .
[15] Subra Suresh,et al. Multiscale Modeling of Red Blood Cell Mechanics and Blood Flow in Malaria , 2011, PLoS Comput. Biol..
[16] Malte Kelm,et al. Circulating Blood Endothelial Nitric Oxide Synthase Contributes to the Regulation of Systemic Blood Pressure and Nitrite Homeostasis , 2013, Arteriosclerosis, thrombosis, and vascular biology.
[17] Greg Huber,et al. Fluid-membrane tethers: minimal surfaces and elastic boundary layers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[18] George Em Karniadakis,et al. Predicting the morphology of sickle red blood cells using coarse-grained models of intracellular aligned hemoglobin polymers. , 2012, Soft matter.
[19] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[20] Bradley F. Chmelka,et al. Current Opinion in Colloid & Interface Science , 2009 .
[21] D P Tieleman,et al. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. , 1997, Biochimica et biophysica acta.
[22] Subra Suresh,et al. Lipid bilayer and cytoskeletal interactions in a red blood cell , 2013, Proceedings of the National Academy of Sciences.
[23] George Lykotrafitis,et al. Modeling of band-3 protein diffusion in the normal and defective red blood cell membrane. , 2016, Soft matter.
[24] Jon Louis Bentley,et al. Multidimensional binary search trees used for associative searching , 1975, CACM.
[25] He Li,et al. Vesiculation of healthy and defective red blood cells. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.
[26] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[27] J. A. Hartigan,et al. A k-means clustering algorithm , 1979 .
[28] Kim Parker,et al. Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence. , 2008, Biophysical journal.
[29] Massimo Bernaschi,et al. The in-silico lab-on-a-chip: petascale and high-throughput simulations of microfluidics at cell resolution , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.
[30] Zhen Li,et al. Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers , 2014, J. Comput. Phys..
[31] M. Klein,et al. Constant-pressure molecular dynamics investigation of cholesterol effects in a dipalmitoylphosphatidylcholine bilayer. , 1998, Biophysical journal.
[32] David Daly,et al. The cache and memory subsystems of the IBM POWER8 processor , 2015, IBM J. Res. Dev..
[33] Martin Lenz,et al. ATP-dependent mechanics of red blood cells , 2009, Proceedings of the National Academy of Sciences.
[34] Feng Feng,et al. Finite element modeling of lipid bilayer membranes , 2006, J. Comput. Phys..
[35] M. L. Ellsworth,et al. Deformation-induced ATP release from red blood cells requires CFTR activity. , 1998, American journal of physiology. Heart and circulatory physiology.