Photosynthetic light use efficiency from satellite sensors: From global to Mediterranean vegetation

Abstract Recent advances in remote-sensing techniques for light use efficiency (LUE) are providing new possibilities for monitoring carbon uptake by terrestrial vegetation (gross primary production, GPP), in particular for Mediterranean vegetation types. This article reviews the state of the art of two of the most promising approaches for remotely estimating LUE: the use of the photochemical reflectance index (PRI) and the exploitation of the passive chlorophyll fluorescence signal. The theoretical and technical issues that remain before these methods can be implemented for the operational global production of LUE from forthcoming hyperspectral satellite data are identified for future research.

[1]  S. Nilsson,et al.  Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000 , 2010 .

[2]  F. Baret,et al.  Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management. , 2006, Journal of experimental botany.

[3]  Frédéric Baret,et al.  LAI, FAPAR and FCOVER products derived from AVHRR long time series: principles and evaluation , 2012 .

[4]  J. Randerson,et al.  Global net primary production: Combining ecology and remote sensing , 1995 .

[5]  Christopher B. Field,et al.  Assessing photosynthetic downregulation in sunflower stands with an optically-based model , 2004, Photosynthesis Research.

[6]  David M. Rider,et al.  Preflight Spectral Calibration of the Orbiting Carbon Observatory , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[7]  C. Schmullius,et al.  Remote sensing of ecosystem light use efficiency with MODIS-based PRI , 2011 .

[8]  Mathias Disney,et al.  Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? , 2007 .

[9]  R. Costanza,et al.  Global mapping of ecosystem services and conservation priorities , 2008, Proceedings of the National Academy of Sciences.

[10]  J. A. Schell,et al.  Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor] , 1973 .

[11]  Josep Peñuelas,et al.  Leaf and stand-level carbon uptake of a Mediterranean forest estimated using the satellite-derived reflectance indices EVI and PRI , 2012 .

[12]  T. Vesala,et al.  Advantages of diffuse radiation for terrestrial ecosystem productivity , 2002 .

[13]  Martín F. Garbulsky,et al.  Estimación de la eficiencia del uso de la radiación en bosques mediterráneos a partir de datos MODIS. Uso del Índice de Reflectancia Fotoquímica (PRI) , 2008 .

[14]  J. Peñuelas,et al.  Diurnal and seasonal variations in the photosynthetic performance and water relations of two co-occurring Mediterranean shrubs, Erica multiflora and Globularia alypum. , 2003, Physiologia plantarum.

[15]  C. Frankenberg,et al.  New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity , 2011, Geophysical Research Letters.

[16]  Elizabeth M. Middleton,et al.  Regional mapping of gross light-use efficiency using MODIS spectral indices , 2008 .

[17]  Olga Sykioti,et al.  Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations , 2010 .

[18]  K. Niyogi,et al.  PHOTOPROTECTION REVISITED: Genetic and Molecular Approaches. , 1999, Annual review of plant physiology and plant molecular biology.

[19]  J. Peñuelas,et al.  Effects of winter cold stress on photosynthesis and photochemical efficiency of PSII of the Mediterranean Cistus albidus L. and Quercus ilex L. , 2005, Plant Ecology.

[20]  Christopher B. Field,et al.  2 – Ecological Scaling of Carbon Gain to Stress and Resource Availability , 1991 .

[21]  J. Peñuelas,et al.  Comparative seasonal gas exchange and chlorophyll fluorescence of two dominant woody species in a Holm Oak Forest , 2003 .

[22]  G. Krause,et al.  Chlorophyll Fluorescence and Photosynthesis: The Basics , 1991 .

[23]  S. Frolking,et al.  Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks , 2008, Proceedings of the National Academy of Sciences.

[24]  Luis Alonso,et al.  CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands. , 2009 .

[25]  John A. Gamon,et al.  Assessing leaf pigment content and activity with a reflectometer , 1999 .

[26]  Markus Reichstein,et al.  Tracking seasonal drought effects on ecosystem light use efficiency with satellite-based PRI in a Mediterranean forest. , 2009 .

[27]  J. Peñuelas,et al.  Relationship between photosynthetic radiation-use efficiency of barley canopies and the photochemical reflectance index (PRI) , 1996 .

[28]  Luis Alonso,et al.  Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications , 2009 .

[29]  María Amparo Gilabert,et al.  Assessment of MODIS imagery to track light-use efficiency in a water limited Mediterranean pine forest , 2012 .

[30]  N. Coops,et al.  Multi-Angle Remote Sensing of Forest Light Use Efficiency , 2007 .

[31]  J. García-Plazaola,et al.  Distribution and evolutionary trends of photoprotective isoprenoids (xanthophylls and tocopherols) within the plant kingdom. , 2009, Physiologia plantarum.

[32]  Frédéric Baret,et al.  GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production , 2013 .

[33]  Hongliang Fang,et al.  Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data , 2006 .

[34]  M. Estiarte,et al.  Effects of long-term experimental night-time warming and drought on photosynthesis, Fv/Fm and stomatal conductance in the dominant species of a Mediterranean shrubland , 2009, Acta Physiologiae Plantarum.

[35]  John R. Miller,et al.  FluorMODgui V3.0: A graphic user interface for the spectral simulation of leaf and canopy chlorophyll fluorescence , 2006, Comput. Geosci..

[36]  R. Waring,et al.  A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning , 1997 .

[37]  P. North,et al.  Remote sensing of canopy light use efficiency using the photochemical reflectance index , 2001 .

[38]  Nuno Carvalhais,et al.  Comparative analysis of MODIS-FAPAR and MERIS-MGVI datasets: potential impacts on ecosystem modeling. , 2009 .

[39]  Philip Lewis,et al.  Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements , 2012 .

[40]  J. Peñuelas,et al.  Assessment of photosynthetic radiation‐use efficiency with spectral reflectance , 1995 .

[41]  Steven F. Oberbauer,et al.  Remote sensing of tundra gross ecosystem productivity and light use efficiency under varying temperature and moisture conditions , 2010 .

[42]  Josep Peñuelas,et al.  Photochemical reflectance index (PRI) and remote sensing of plant CO₂ uptake. , 2011, The New phytologist.

[43]  Iolanda Filella,et al.  Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought , 2004 .

[44]  C. Frankenberg,et al.  The Geostationary Carbon Process Mapper , 2012, 2012 IEEE Aerospace Conference.

[45]  C. Potter,et al.  Interannual Variability in Terrestrial Net Primary Production: Exploration of Trends and Controls on Regional to Global Scales , 1999, Ecosystems.

[46]  Richard H. Waring,et al.  Environmental Limits on Net Primary Production and Light‐Use Efficiency Across the Oregon Transect , 1994 .

[47]  T. A. Black,et al.  The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements. , 2008, The Science of the total environment.

[48]  C. Frankenberg,et al.  Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO 2 retrievals , 2012 .

[49]  Ranga B. Myneni,et al.  Potential gross primary productivity of terrestrial vegetation from 1982 - 1990 , 1995 .

[50]  Aleixandre Verger,et al.  ntercomparison and quality assessment of MERIS , MODIS and SEVIRI FAPAR roducts over the Iberian Peninsula , 2012 .

[51]  Piermaria Corona,et al.  Combining remote sensing and ancillary data to monitor the gross productivity of water-limited forest ecosystems , 2009 .

[52]  K Maxwell,et al.  Chlorophyll fluorescence--a practical guide. , 2000, Journal of experimental botany.

[53]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[54]  J. Gamon,et al.  The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels , 1997, Oecologia.

[55]  Josep Peñuelas,et al.  The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis , 2011 .

[56]  W. Oechel,et al.  Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a Southern California chaparral ecosystem , 2006 .

[57]  Christopher B. Field,et al.  Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves☆ , 1994 .

[58]  Z. Malenovský,et al.  Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence. , 2009, Journal of experimental botany.

[59]  J. A. Plascyk The MK II Fraunhofer Line Discriminator (FLD-II) for Airborne and Orbital Remote Sensing of Solar-Stimulated Luminescence , 1975 .

[60]  Hongliang Fang,et al.  Estimation of incident Photosynthetically Active Radiation from MODIS Data , 2006 .

[61]  T. A. Black,et al.  Separating physiologically and directionally induced changes in PRI using BRDF models , 2008 .

[62]  Christian Frankenberg,et al.  Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2 A‐band spectra of reflected sun‐light , 2011 .

[63]  J. Peñuelas,et al.  Chlorophyll fluorescence responses to temperature and water availability in two co-dominant Mediterr , 2011 .

[64]  Christopher B. Field,et al.  ASSESSING PHOTOSYNTHETIC RADIATION-USE EFFICIENCY OF EMERGENT AQUATIC VEGETATION FROM SPECTRAL REFLECTANCE , 1997 .

[65]  B. Demmig‐Adams,et al.  The role of xanthophyll cycle carotenoids in the protection of photosynthesis , 1996 .

[66]  David A. Walker,et al.  Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[67]  S. Los,et al.  The impact of diffuse sunlight on canopy light‐use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes , 2007 .

[68]  K. Winter,et al.  Lutein epoxide cycle, light harvesting and photoprotection in species of the tropical tree genus Inga. , 2008, Plant, cell & environment.

[69]  Dar A. Roberts,et al.  Modeling spatially distributed ecosystem flux of boreal forest using hyperspectral indices from AVIRIS imagery , 2001 .

[70]  J. Monteith Climate and the efficiency of crop production in Britain , 1977 .

[71]  J. Peñuelas,et al.  PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle , 2009 .

[72]  E. Middleton,et al.  Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: simulations and space-based observations from SCIAMACHY and GOSAT , 2012 .

[73]  Jonas Ardö,et al.  Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems , 2010 .

[74]  Maosheng Zhao,et al.  A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production , 2004 .

[75]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[76]  Josep Peñuelas,et al.  Remote estimation of carbon dioxide uptake by a Mediterranean forest , 2008 .

[77]  Josep Peñuelas,et al.  Comparative field study of spring and summer leaf gas exchange and photobiology of the mediterranean trees Quercus ilex and Phillyrea latifolia , 1998 .

[78]  Patrick E. Van Laake,et al.  Mapping PAR using MODIS atmosphere products , 2005 .

[79]  R. D. Groot,et al.  A typology for the classification, description and valuation of ecosystem functions, goods and services , 2002 .

[80]  Christopher B. Field,et al.  Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies , 1990, Oecologia.

[81]  W. Oechel,et al.  Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species , 2002, Oecologia.

[82]  Hans Peter Schmid,et al.  Potential of MODIS ocean bands for estimating CO2 flux from terrestrial vegetation: A novel approach , 2004 .

[83]  P. Maisongrande,et al.  Woody plant richness and NDVI response to drought events in Catalonian (northeastern Spain) forests. , 2007, Ecology.

[84]  W. Cohen,et al.  Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes: methodology and results using Joint Research Center products derived from SeaWiFS against ground-based estimations. , 2006 .

[85]  F. Maestre,et al.  Spatio-temporal dynamics of chlorophyll fluorescence in a semi-arid Mediterranean shrubland , 2004 .

[86]  Thomas Hilker,et al.  Remote sensing of photosynthetic light-use efficiency across two forested biomes: Spatial scaling , 2010 .

[87]  T. A. Black,et al.  Inferring terrestrial photosynthetic light use efficiency of temperate ecosystems from space , 2011 .

[88]  W. Larcher,et al.  Photosynthesis as a temperature indicator in Quercus ilex L. , 2000 .

[89]  M. Schildhauer,et al.  Spectral Network (SpecNet)—What is it and why do we need it? , 2006 .

[90]  G. Asner Biophysical and Biochemical Sources of Variability in Canopy Reflectance , 1998 .

[91]  Alexei Lyapustin,et al.  The time series technique for aerosol retrievals over land from MODIS , 2008 .

[92]  J. Peñuelas,et al.  Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia , 2006, Biologia Plantarum.

[93]  Ismael Moya,et al.  Remotely sensed blue and red fluorescence emission for monitoring vegetation , 1992 .

[94]  Shunlin Liang,et al.  Mapping incident photosynthetically active radiation from MODIS data over China , 2008 .

[95]  Gérard Dedieu,et al.  Methodology for the estimation of terrestrial net primary production from remotely sensed data , 1994 .

[96]  C. Field,et al.  Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types , 1995 .

[97]  L. Gómez-Chova,et al.  Estimation of solar‐induced vegetation fluorescence from space measurements , 2007 .

[98]  R. O'Neill,et al.  The value of the world's ecosystem services and natural capital , 1997, Nature.

[99]  T. A. Black,et al.  A MODIS-derived photochemical reflectance index to detect inter-annual variations in the photosynthetic light-use efficiency of a boreal deciduous forest , 2005 .