Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces

In this paper, the fully parabolic Keller-Segel system \begin{equation} \left\{ \begin{array}{llc} u_t=\Delta u-\nabla\cdot(u\nabla v), &(x,t)\in \Omega\times (0,T),\\ v_t=\Delta v-v+u, &(x,t)\in\Omega\times (0,T),\\ \end{array} \right. \qquad \qquad (\star) \end{equation} is considered under Neumann boundary conditions in a bounded domain $\Omega\subset\mathbb{R}^n$ with smooth boundary, where $n\ge 2$. We derive a smallness condition on the initial data in optimal Lebesgue spaces which ensure global boundedness and large time convergence. More precisely, we shall show that one can find $\varepsilon_0>0$ such that for all suitably regular initial data $(u_0,v_0)$ satisfying $\|u_0\|_{L^{\frac{n}{2}}(\Omega)}<\varepsilon_0$ and $\|\nabla v_0\|_{L^{n}(\Omega)}<\varepsilon_0$, the above problem possesses a global classical solution which is bounded and approaches the constant steady state $(m,m)$ with $m:=\frac{1}{|\Omega|}\int_{\Omega} u_0$. Our approach allows us to furthermore study a general chemotaxis system with rotational sensitivity in dimension 2, which is lacking the natural energy structure associated with ($\star$). For such systems, we prove a global existence and boundedness result under corresponding smallness conditions on the initially present total mass of cells and the chemical gradient.

[1]  R. Temam Navier-Stokes Equations , 1977 .

[2]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[3]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[4]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[5]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[6]  Chuan Xue,et al.  Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms , 2015 .

[7]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[8]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[9]  Chuan Xue,et al.  Multiscale Models of Taxis-Driven Patterning in Bacterial Populations , 2009, SIAM J. Appl. Math..

[10]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[11]  Sachiko Ishida,et al.  Global-in-time bounded weak solutions to a degenerate quasilinear Keller–Segel system with rotation , 2014 .

[12]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[13]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[14]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .

[15]  I. Tuval,et al.  Bacterial swimming and oxygen transport near contact lines. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Michael Winkler,et al.  Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system , 2011, 1112.4156.

[17]  Benoît Perthame,et al.  Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions , 2004 .

[18]  Benoit Perthame,et al.  Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces , 2008, Math. Comput. Model..

[19]  Toshitaka Nagai,et al.  Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains , 2001 .