SIMPLE GROUPS, PRODUCT ACTIONS, AND GENERALIZED QUADRANGLES

The classification of flag-transitive generalized quadrangles is a long-standing open problem at the interface of finite geometry and permutation group theory. Given that all known flag-transitive generalized quadrangles are also point-primitive (up to point–line duality), it is likewise natural to seek a classification of the point-primitive examples. Working toward this aim, we are led to investigate generalized quadrangles that admit a collineation group $G$ preserving a Cartesian product decomposition of the set of points. It is shown that, under a generic assumption on $G$ , the number of factors of such a Cartesian product can be at most four. This result is then used to treat various types of primitive and quasiprimitive point actions. In particular, it is shown that $G$ cannot have holomorph compound O’Nan–Scott type. Our arguments also pose purely group-theoretic questions about conjugacy classes in nonabelian finite simple groups and fixities of primitive permutation groups.

[1]  Luke Morgan,et al.  Generalised Polygons Admitting a Point-Primitive Almost Simple Group of Suzuki or Ree Type , 2016, Electron. J. Comb..

[2]  D. Gorenstein,et al.  The Classification of the Finite Simple Groups , 1983 .

[3]  Joy Morris,et al.  Generalised quadrangles with a group of automorphisms acting primitively on points and lines , 2012, J. Comb. Theory, Ser. A.

[4]  C. Praeger,et al.  Point-primitive, line-transitive generalised quadrangles of holomorph type , 2015, 1508.02295.

[5]  D. Ghinelli Regular groups on generalized quadrangles and nonabelian difference sets with multiplier -1 , 1992 .

[6]  W. Feit,et al.  SOLVABILITY OF GROUPS OF ODD ORDER , 2012 .

[7]  John Bamberg,et al.  Point regular groups of automorphisms of generalised quadrangles , 2010, J. Comb. Theory, Ser. A.

[8]  John Bamberg,et al.  FinInG: a package for Finite Incidence Geometry , 2016, 1606.05530.

[9]  Hendrik Van Maldeghem Groups and Generalized Polygons (Algebraic Combinatorics) , 1998 .

[10]  Koen Thas,et al.  Generalized Quadrangles with an Abelian Singer Group , 2006, Des. Codes Cryptogr..

[11]  N. Spaltenstein,et al.  Caractères unipotents de $${}^3D_4 (\mathbb{F}_q )$$ , 1982 .

[12]  László Babai On the automorphism groups of strongly regular graphs II , 2015 .

[13]  J. Thas,et al.  Finite Generalized Quadrangles , 2009 .

[14]  Ernest E. Shult,et al.  On a class of doubly transitive groups , 1972 .

[15]  C. Praeger Finite Transitive Permutation Groups and Bipartite Vertex-Transitive Graphs , 2003 .

[16]  C. Praeger,et al.  Generalized Quadrangles and Transitive Pseudo‐Hyperovals , 2014, 1406.6445.

[17]  Michael Giudici,et al.  Classical Groups, Derangements and Primes , 2016 .

[18]  Alice C. Niemeyer,et al.  Finite Transitive Permutation Groups and Finite Vertex-Transitive Graphs , 2013 .

[19]  Michael Giudici,et al.  Low-dimensional classical groups , 2016 .

[20]  Cheryl E. Praeger,et al.  Point-primitive generalised hexagons and octagons , 2014, J. Comb. Theory, Ser. A.

[21]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[22]  Daniel Frohardt,et al.  FIXED POINT RATIOS IN EXCEPTIONAL GROUPS OF RANK AT MOST TWO , 2002 .

[23]  Aner Shalev,et al.  On fixed points of elements in primitive permutation groups , 2015 .

[24]  M. Liebeck,et al.  Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras , 2012 .

[25]  Jacques Tits,et al.  Sur la trialité et certains groupes qui s’en déduisent , 1959 .

[26]  Satoshi Yoshiara A generalized quadrangle with an automorphism group acting regularly on the points , 2007, Eur. J. Comb..