Faithful Entanglement Sharing for Quantum Communication Against Collective Noise

We present an economical setup for faithful entanglement sharing against collective noise. It is composed of polarizing beam splitters, half wave plates, polarization independent wavelength division multiplexers, and frequency shifters. An arbitrary qubit error on the polarization state of each photon in a multi-photon system caused by the noisy channel can be rejected, without resorting to additional qubits, fast polarization modulators, and nondestructive quantum nondemolition detectors. Its success probability is in principle 100%, which is independent of the noise parameters, and it can be applied directly in any one-way quantum communication protocol based on entanglement.

[1]  White,et al.  Entangled state quantum cryptography: eavesdropping on the ekert protocol , 1999, Physical review letters.

[2]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[3]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[4]  Fuguo Deng,et al.  Faithful qubit transmission against collective noise without ancillary qubits , 2007, 0708.0068.

[5]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[6]  E. H. Huntington Components for optical qubits encoded in sideband modes (5 pages) , 2004 .

[7]  Jean-Marc Merolla,et al.  Frequency-coded quantum key distribution. , 2007, Optics letters.

[8]  M. Teich,et al.  Decoherence-free subspaces in quantum key distribution. , 2003, Physical review letters.

[9]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[10]  N Imoto,et al.  Faithful qubit distribution assisted by one additional qubit against collective noise. , 2005, Physical review letters.

[11]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[12]  M. Fejer,et al.  Differential phase shift quantum key distribution experiment over 105 km fibre , 2005, quant-ph/0507110.

[13]  Efficient polarization qubit transmission assisted by frequency degree of freedom , 2010, 1009.0841.

[14]  N. Gisin,et al.  Quantum key distribution over 67 km with a plug , 2002 .

[15]  H. Bechmann-Pasquinucci,et al.  Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography , 1998, quant-ph/9807041.

[16]  R. Laflamme,et al.  Robust polarization-based quantum key distribution over a collective-noise channel. , 2003, Physical review letters.

[17]  M. Fejer,et al.  Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. , 2005, Optics letters.

[18]  A frequency-coded quantum key distribution scheme , 2008 .

[19]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.

[20]  Fuguo Deng,et al.  Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement , 2010 .

[21]  Andrew G. Glen,et al.  APPL , 2001 .

[22]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[23]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[24]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[25]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[26]  Dexter Kozen,et al.  New , 2020, MFPS.

[27]  Jean-Marc Merolla,et al.  Single-Photon Interference in Sidebands of Phase-Modulated Light for Quantum Cryptography , 1999 .

[28]  Yu-Bo Sheng,et al.  Efficient faithful qubit transmission with frequency degree of freedom , 2009, 0907.0053.

[29]  Demetrios A. Kalamidas Single-photon quantum error rejection and correction with linear optics , 2005, quant-ph/0506114.

[30]  Xi-Han Li,et al.  Efficient quantum key distribution over a collective noise channel (6 pages) , 2008, 0808.0042.

[31]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[32]  A. Zeilinger,et al.  Discrete, tunable color-entanglement , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[33]  Yu-Bo Sheng,et al.  Efficient quantum entanglement distribution over an arbitrary collective-noise channel , 2010, 1005.0050.