Highly piezoelectric MgZr co-doped aluminum nitride-based vibrational energy harvesters [Correspondence]

The first MgZr co-doped AlN-based vibrational energy harvester (VEH) is presented. (MgZr)AlN, which is a new class of doped AlN, provides high piezoelectricity and cost advantage. Using 13%-(MgZr)-doped AlN for micromachined VEHs, maximum output power of 1.3 μW was achieved with a Q-factor of 400 when resonant frequency, vibration acceleration, load resistance were 792 Hz, 8 m/s2, and 1.1 MΩ, respectively. Normalized power density was 8.1 kW.g-2.m-3. This was one of the highest values among the currently available piezoelectric VEHs.

[1]  G. Wingqvist,et al.  Origin of the anomalous piezoelectric response in wurtzite Sc(x)Al(1-x)N alloys. , 2010, Physical review letters.

[2]  T. Yokoyama,et al.  Effect of Mg and Zr co-doping on piezoelectric AlN thin films for bulk acoustic wave resonators , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[3]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[4]  M. Nguyen,et al.  Epitaxial Pb(Zr,Ti)O 3 thin films for a MEMS application , 2011 .

[5]  Ho Won Jang,et al.  Giant Piezoelectricity on Si for Hyperactive MEMS , 2011, Science.

[6]  A. Zunger,et al.  n-type doping principles for doping CuInSe/sub 2/ and CuGaSe/sub 2/ with Cl, Br, I, Mg, Zn, and Cd , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[7]  M. Akiyama,et al.  Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films , 2013 .

[8]  M. Hara,et al.  Micro-Energy Harvesters Integrated with a Quatrefoil-Shaped Proof Mass Suspended by Multiple (K,Na)NbO3 Beams , 2013 .

[9]  Tokihiro Nishihara,et al.  Highly piezoelectric co-doped AlN thin films for bulk acoustic wave resonators , 2013, 2013 IEEE International Ultrasonics Symposium (IUS).

[10]  Sang-Gook Kim,et al.  DESIGN CONSIDERATIONS FOR MEMS-SCALE PIEZOELECTRIC MECHANICAL VIBRATION ENERGY HARVESTERS , 2005 .

[11]  P. Frach,et al.  Sputter deposition of stress-controlled piezoelectric AlN and AlScN films for ultrasonic and energy harvesting applications , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[12]  W. Kern The Evolution of Silicon Wafer Cleaning Technology , 1990 .

[13]  A. Artieda,et al.  Electromechanical properties of Al0.9Sc0.1N thin films evaluated at 2.5 GHz film bulk acoustic resonators , 2011 .

[14]  H. Wikle,et al.  The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting , 2008 .

[15]  Y. V. Andel,et al.  Vibration energy harvesting with aluminum nitride-based piezoelectric devices , 2009 .

[16]  Ventsislav Yantchev,et al.  Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications , 2011 .

[17]  A. Zunger,et al.  n-type doping of CuInSe2 and CuGaSe2 , 2005 .

[18]  Paul Muralt,et al.  Piezoelectric Al1−xScxN thin films: A semiconductor compatible solution for mechanical energy harvesting and sensors , 2013 .

[19]  Hiroki Kuwano,et al.  Experimental Study of Highly Sensitive Sensor Using a Surface Acoustic Wave Resonator for Wireless Strain Detection , 2012 .

[20]  G. Wingqvist,et al.  Increased electromechanical coupling in w−ScxAl1−xN , 2010 .

[21]  Kazuhiko Adachi,et al.  Power-generation performance of lead-free (K,Na)NbO3 piezoelectric thin-film energy harvesters , 2012 .

[22]  S. Trolier-McKinstry,et al.  Thin Film Piezoelectrics for MEMS , 2004 .

[23]  A. Zunger,et al.  n -type doping of CuIn Se 2 and CuGa Se 2 , 2005 .

[24]  D. Briand,et al.  Epitaxial piezoelectric MEMS on silicon , 2010 .

[25]  Dennis Hohlfeld,et al.  Modeling and characterization of MEMS-based piezoelectric harvesting devices , 2010 .

[26]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[27]  Nobuaki Kawahara,et al.  Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering , 2009, Advanced materials.

[28]  Ziping Cao,et al.  Design and characterization of miniature piezoelectric generators with low resonant frequency , 2012 .

[29]  J. Narayan,et al.  Integration of Pb(Zr0.52Ti0.48)O3 epilayers with Si by domain epitaxy , 2000 .

[30]  T. Mishima,et al.  Bulk micromachined energy harvesters employing (K, Na)NbO3 thin film , 2013 .