Heuristics for the variable sized bin-packing problem

We investigate the one-dimensional variable-sized bin-packing problem. This problem requires packing a set of items into a minimum-cost set of bins of unequal sizes and costs. Six optimization-based heuristics for this problem are presented and compared. We analyze their empirical performance on a large set of randomly generated test instances with up to 2000 items and seven bin types. The first contribution of this paper is to provide evidence that a set covering heuristic proves to be highly effective and capable of delivering very-high quality solutions within short CPU times. In addition, we found that a simple subset-sum problem-based heuristic consistently outperforms heuristics from the literature while requiring extremely short CPU times.

[1]  Alberto Caprara,et al.  Modified subset sum heuristics for bin packing , 2005, Inf. Process. Lett..

[2]  Matteo Fischetti,et al.  Algorithms for railway crew management , 1997, Math. Program..

[3]  Edward G. Coffman,et al.  Bin packing with divisible item sizes , 1987, J. Complex..

[4]  Frank D. Murgolo An Efficient Approximation Scheme for Variable-Sized Bin Packing , 1987, SIAM J. Comput..

[5]  E. Hopper,et al.  A genetic algorithm for a 2D industrial packing problem , 1999 .

[6]  Michele Monaci,et al.  Algorithms for packing and scheduling problems , 2003, 4OR.

[7]  S. Jakobs,et al.  European Journal Ofoperational Research on Genetic Algorithms for the Packing of Polygons , 2022 .

[8]  Rubén Ruiz,et al.  TWO NEW ROBUST GENETIC ALGORITHMS FOR THE FLOWSHOP SCHEDULING PROBLEM , 2006 .

[9]  Mohamed Haouari,et al.  A probabilistic greedy search algorithm for combinatorial optimisation with application to the set covering problem , 2002, J. Oper. Res. Soc..

[10]  Alberto Caprara,et al.  Worst-case analysis of the subset sum algorithm for bin packing , 2004, Oper. Res. Lett..

[11]  D. K. Friesen,et al.  Variable Sized Bin Packing , 1986, SIAM J. Comput..

[12]  Gleb Belov,et al.  A cutting plane algorithm for the one-dimensional cutting stock problem with multiple stock lengths , 2002, Eur. J. Oper. Res..

[13]  Paolo Toth,et al.  A Set-Covering-Based Heuristic Approach for Bin-Packing Problems , 2006, INFORMS J. Comput..

[14]  David Pisinger,et al.  The two-dimensional bin packing problem with variable bin sizes and costs , 2005, Discret. Optim..

[15]  Hitoshi Iima,et al.  A new design of genetic algorithm for bin packing , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[16]  Cláudio Alves,et al.  Accelerating column generation for variable sized bin-packing problems , 2007, Eur. J. Oper. Res..

[17]  Roy E. Marsten,et al.  Exact solution of crew scheduling problems using the set partitioning model: Recent successful applications , 1981, Networks.

[18]  De-fu Zhang,et al.  An Improved Heuristic Recursive Strategy Based on Genetic Algorithm for the Strip Rectangular Packing Problem , 2007 .

[19]  Emanuel Falkenauer,et al.  A hybrid grouping genetic algorithm for bin packing , 1996, J. Heuristics.

[20]  Dag Wedelin,et al.  An algorithm for large scale 0–1 integer programming with application to airline crew scheduling , 1995, Ann. Oper. Res..

[21]  Sungsoo Park,et al.  Algorithms for the variable sized bin packing problem , 2003, Eur. J. Oper. Res..

[22]  J. Beasley,et al.  A genetic algorithm for the set covering problem , 1996 .

[23]  H. D. Ratliff,et al.  Set partitioning based heuristics for interactive routing , 1981, Networks.

[24]  Antonio Sassano,et al.  A Lagrangian-based heuristic for large-scale set covering problems , 1998, Math. Program..

[25]  Chengbin Chu,et al.  Variable-Sized Bin Packing: Tight Absolute Worst-Case Performance Ratios for Four Approximation Algorithms , 2001, SIAM J. Comput..

[26]  James P. Kelly,et al.  A Set-Partitioning-Based Heuristic for the Vehicle Routing Problem , 1999, INFORMS J. Comput..

[27]  Matteo Fischetti,et al.  A Heuristic Method for the Set Covering Problem , 1999, Oper. Res..

[28]  Mehdi Serairi,et al.  Relaxations and exact solution of the variable sized bin packing problem , 2011, Comput. Optim. Appl..