Pathways of transport protein evolution: recent advances

Abstract We herein report recent advances in our understanding of transport protein evolution. Numerous families of complex transmembrane transport proteins are believed to have arisen from short channel-forming amphipathic or hydrophobic peptides by various types of intragenic duplication events. Distinct pathways distinguish families, demonstrating independent origins for some, and allowing assignment of others to superfamilies. Some families have diversified in topology, whereas others have remained uniform. An example of ‘retroevolution’ was discovered where a more complex carrier gave rise to a structurally and functionally simpler channel. The results described in this review article expand our understanding of protein evolution.

[1]  M H Saier,et al.  The drug/metabolite transporter superfamily. , 2001, European journal of biochemistry.

[2]  M. Saier Genome archeology leading to the characterization and classification of transport proteins. , 1999, Current opinion in microbiology.

[3]  M. Saier,et al.  Evolutionary origins of members of a superfamily of integral membrane cytochrome c biogenesis proteins. , 2007, Biochimica et biophysica acta.

[4]  Milton H Saier,et al.  The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. , 2003, European journal of biochemistry.

[5]  Milton H. Saier,et al.  TCDB: the Transporter Classification Database for membrane transport protein analyses and information , 2005, Nucleic Acids Res..

[6]  Geoffrey Chang,et al.  X-ray structure of EmrE supports dual topology model , 2007, Proceedings of the National Academy of Sciences.

[7]  M. Saier,et al.  Eukaryotic transmembrane solute transport systems. , 1999, International review of cytology.

[8]  M. Saier,et al.  Families of transmembrane transporters selective for amino acids and their derivatives. , 2000, Microbiology.

[9]  M. Saier,et al.  Bioinformatic Characterization of P-Type ATPases Encoded Within the Fully Sequenced Genomes of 26 Eukaryotes , 2009, Journal of Membrane Biology.

[10]  C. Oxvig,et al.  The structural basis of calcium transport by the calcium pump , 2007, Nature.

[11]  R. Losick,et al.  A Three-Protein Signaling Pathway Governing Immunity to a Bacterial Cannibalism Toxin , 2006, Cell.

[12]  W. Kühlbrandt,et al.  Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus. , 2008, Journal of molecular biology.

[13]  Henry Chan,et al.  The P-Type ATPase Superfamily , 2010, Journal of Molecular Microbiology and Biotechnology.

[14]  Jr. M.H. Saier,et al.  Families of Proteins Forming Transmembrane Channels , 2000, The Journal of Membrane Biology.

[15]  M. Saier Phylogenetic approaches to the identification and characterization of protein families and superfamilies. , 1996, Microbial & comparative genomics.

[16]  M. Saier,et al.  Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution , 1994, Microbiological reviews.

[17]  Dorjee G. Tamang,et al.  Protein secretion and membrane insertion systems in bacteria and eukaryotic organelles. , 2008, Advances in applied microbiology.

[18]  M H Saier,et al.  Evolution of transport proteins. , 2001, Genetic engineering.

[19]  C. Toyoshima,et al.  Crystal structure of the sodium–potassium pump at 2.4 Å resolution , 2009, Nature.

[20]  Milton H Saier,et al.  Tracing pathways of transport protein evolution , 2003, Molecular microbiology.

[21]  Milton H. Saier,et al.  Vectorial Metabolism and the Evolution of Transport Systems , 2000, Journal of bacteriology.

[22]  Y Zhai,et al.  Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein. , 2001, Biochimica et Biophysica Acta.

[23]  M. Saier,et al.  Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. , 1998, Advances in microbial physiology.

[24]  M. Bramkamp,et al.  Common patterns and unique features of P-type ATPases: a comparative view on the KdpFABC complex from Escherichia coli (Review) , 2007, Molecular membrane biology.

[25]  Charles Elkan,et al.  The Transporter Classification Database: recent advances , 2008, Nucleic Acids Res..

[26]  Dorjee G. Tamang,et al.  Animal Ca2+ release-activated Ca2+ (CRAC) channels appear to be homologous to and derived from the ubiquitous cation diffusion facilitators , 2010, BMC Research Notes.

[27]  Dorjee G. Tamang,et al.  Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins , 2010, The Journal of Membrane Biology.

[28]  P. Nissen,et al.  Crystal structure of the plasma membrane proton pump , 2008, Nature.

[29]  M. Saier Cell Membrane, Prokaryotic , 2009 .

[30]  Active Transport in Communication, Protection and Nutrition , 2007, Journal of Molecular Microbiology and Biotechnology.

[31]  M. Saier,et al.  Function of the Duplicated IIB Domain and Oligomeric Structure of the Fructose Permease of Escherichia coli , 1996, The Journal of Biological Chemistry.

[32]  Q. Ren,et al.  The Bioinformatic Study of Transmembrane Molecular Transport , 2006, Journal of Molecular Microbiology and Biotechnology.

[33]  K. Altendorf,et al.  The K+-translocating KdpFABC complex from Escherichia coli: A P-type ATPase with unique features , 2007, Journal of bioenergetics and biomembranes.

[34]  Milton H. Saier,et al.  Answering Fundamental Questions in Biology with Bioinformatics Although biological advances depend on experiments, emerging theory-based disciplines also expand our understanding of life and its origins , 2003 .

[35]  M. Saier A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters , 2000, Microbiology and Molecular Biology Reviews.

[36]  P. Nissen,et al.  The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump , 2010, Quarterly Reviews of Biophysics.

[37]  Hiroshi Suzuki,et al.  Ca2+ポンプの分子作動機構:部位特異的変異及びリン酸化中間体アナログの開発と構造解析による理解 , 2010 .

[38]  F. Jacob,et al.  Evolution and tinkering. , 1977, Science.

[39]  M. Saier Families of transmembrane sugar transport proteins , 2000, Molecular microbiology.