Optimal strictly positive real controllers using direct optimization

Abstract In this paper, we consider the H 2 -optimal control problem subject to the constraint that the resulting controller be strictly positive real. A direct numerical optimization approach is adopted in conjunction with a controller parametrization that is linear in the unknown parameters. The SPR constraint is easily expressed at each frequency in the form of a linear inequality. The method is applied to a numerical example from the literature and good results are achieved. In particular, the proposed method is particularly adept at determining low order controllers.

[1]  Jose C. Geromel,et al.  Synthesis of positive real /spl Hscr//sub 2/ controllers , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[2]  K. Hoffman Banach Spaces of Analytic Functions , 1962 .

[3]  Dennis S. Bernstein,et al.  Dissipative H/sub 2//H/sub /spl infin// controller synthesis , 1994 .

[4]  Christopher J. Damaren,et al.  Optimal strictly positive real approximations for stable transfer functions , 1995 .

[5]  S. Joshi,et al.  On a class of marginally stable positive-real systems , 1996, IEEE Trans. Autom. Control..

[6]  Noboru Sakamoto,et al.  New results for strict positive realness and feedback stability , 2000, IEEE Trans. Autom. Control..

[7]  J. Wen Time domain and frequency domain conditions for strict positive realness , 1988 .

[8]  Mark Mclaren,et al.  Robust multivariable control of large space structures using positivity , 1987 .

[9]  Redondo Beach,et al.  Stability of Large Space Structure Control Systems Using Positivity Concepts , 1981 .

[10]  P. Gill,et al.  User's Guide for SOL/NPSOL: A Fortran Package for Nonlinear Programming. , 1983 .

[11]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[12]  E. Polak,et al.  On the design of linear multivariable feedback systems via constrained nondifferentiable optimization in H/sup infinity / spaces , 1989 .

[13]  R. Lozano-Leal,et al.  On the design of the dissipative LQG-type controllers , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[14]  Dennis S. Bernstein,et al.  Dissipative H2/H∞Controller Synthesis , 1994 .

[15]  José Claudio Geromel,et al.  Synthesis of positive real H2 controllers , 1997, IEEE Trans. Autom. Control..

[16]  Takashi Shimomura,et al.  Strictly Positive Real H Controller Synthesis via Iterative Algorithms for Convex Optimization , 2002 .

[17]  Petros A. Ioannou,et al.  Frequency domain conditions for strictly positive real functions , 1987 .