Verifiability of Argumentation Semantics

Dung's abstract argumentation theory is a widely used formalism to model conflicting information and to draw conclusions in such situations. Hereby, the knowledge is represented by so-called argumentation frameworks (AFs) and the reasoning is done via semantics extracting acceptable sets. All reasonable semantics are based on the notion of conflict-freeness which means that arguments are only jointly acceptable when they are not linked within the AF. In this paper, we study the question which information on top of conflict-free sets is needed to compute extensions of a semantics at hand. We introduce a hierarchy of so-called verification classes specifying the required amount of information. We show that well-known standard semantics are exactly verifiable through a certain such class. Our framework also gives a means to study semantics lying inbetween known semantics, thus contributing to a more abstract understanding of the different features argumentation semantics offer.

[1]  Martin Wigbertus Antonius Caminada Comparing Two Unique Extension Semantics for Formal Argumentation : Ideal and Eager , 2007 .

[2]  Pietro Baroni,et al.  SCC-recursiveness: a general schema for argumentation semantics , 2005, Artif. Intell..

[3]  Dirk Vermeir,et al.  Robust Semantics for Argumentation Frameworks , 1999, J. Log. Comput..

[4]  Stefan Woltran,et al.  Complexity of semi-stable and stage semantics in argumentation frameworks , 2010, Inf. Process. Lett..

[5]  Martin Caminada Strong Admissibility Revisited , 2014, COMMA.

[6]  Bart Verheij,et al.  Two Approaches to Dialectical Argumentation: Admissible Sets and Argumentation Stages , 1999 .

[7]  Dov M. Gabbay,et al.  A Logical Account of Formal Argumentation , 2009, Stud Logica.

[8]  Ringo Baumann,et al.  The equivalence zoo for Dung-style semantics , 2018, J. Log. Comput..

[9]  Martin Caminada,et al.  On the evaluation of argumentation formalisms , 2007, Artif. Intell..

[10]  Miroslaw Truszczynski,et al.  Strong and uniform equivalence of nonmonotonic theories – an algebraic approach , 2006, Annals of Mathematics and Artificial Intelligence.

[11]  Ringo Baumann,et al.  Infinite Argumentation Frameworks - On the Existence and Uniqueness of Extensions , 2015, Advances in Knowledge Representation, Logic Programming, and Abstract Argumentation.

[12]  Stefan Woltran,et al.  The cf2 argumentation semantics revisited , 2013, J. Log. Comput..

[13]  Michael J. Maher Eqivalences of Logic Programs , 1986, ICLP.

[14]  Stefan Woltran,et al.  The role of self-attacking arguments in characterizations of equivalence notions , 2016, J. Log. Comput..

[15]  Ringo Baumann,et al.  Analyzing the Equivalence Zoo in Abstract Argumentation , 2013, CLIMA.

[16]  Sylvie Doutre,et al.  Quantifying the Difference Between Argumentation Semantics , 2016, COMMA.

[17]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[18]  Hannes Strass,et al.  An Abstract Logical Approach to Characterizing Strong Equivalence in Logic-based Knowledge Representation Formalisms , 2016, KR.

[19]  John L. Pollock,et al.  Defeasible Reasoning , 2020, Synthese Library.

[20]  Paul E. Dunne,et al.  Semi-stable semantics , 2006, J. Log. Comput..

[21]  Ofer Arieli Conflict-Tolerant Semantics for Argumentation Frameworks , 2012, JELIA.

[22]  Pietro Baroni,et al.  On the resolution-based family of abstract argumentation semantics and its grounded instance , 2011, Artif. Intell..

[23]  Stefan Woltran,et al.  Characterizing Strong Equivalence for Argumentation Frameworks , 2010, KR.

[24]  Paolo Mancarella,et al.  Computing ideal sceptical argumentation , 2007, Artif. Intell..

[25]  Pietro Baroni,et al.  Comparing Argumentation Semantics with Respect to Skepticism , 2007, ECSQARU.

[26]  Juan Carlos Nieves,et al.  A Schema for Generating Relevant Logic Programming Semantics and its Applications in Argumentation Theory , 2011, Fundam. Informaticae.

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  Thomas Linsbichler,et al.  Resolution-Based Grounded Semantics Revisited , 2014, COMMA.

[29]  Pietro Baroni,et al.  An introduction to argumentation semantics , 2011, The Knowledge Engineering Review.

[30]  Trevor J. M. Bench-Capon,et al.  Coherence in finite argument systems , 2002, Artif. Intell..

[31]  Dominique Longin,et al.  SESAME - A System for Specifying Semantics in Abstract Argumentation , 2016, SAFA@COMMA.

[32]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[33]  Ronald Prescott Loui,et al.  Defeat among arguments: a system of defeasible inference , 1987, Comput. Intell..

[34]  Ringo Baumann Characterizing Equivalence Notions for Labelling-Based Semantics , 2016, KR.

[35]  Pietro Baroni,et al.  On principle-based evaluation of extension-based argumentation semantics , 2007, Artif. Intell..

[36]  David Pearce,et al.  Strongly equivalent logic programs , 2001, ACM Trans. Comput. Log..

[37]  Henry Prakken,et al.  Logics for Defeasible Argumentation , 2001 .

[38]  Sanjay Modgil,et al.  On the Graded Acceptability of Arguments , 2015, IJCAI.