Physics Information Aided Kriging using Stochastic Simulation Models
暂无分享,去创建一个
Alexandre M. Tartakovsky | Xiu Yang | Guzel Tartakovsky | A. Tartakovsky | G. Tartakovsky | Xiu Yang
[1] Xiu Yang,et al. Reweighted ℓ1ℓ1 minimization method for stochastic elliptic differential equations , 2013, J. Comput. Phys..
[2] Amine Bermak,et al. Gaussian process for nonstationary time series prediction , 2004, Comput. Stat. Data Anal..
[3] Xiu Yang,et al. Adaptive ANOVA decomposition of stochastic incompressible and compressible flows , 2012, J. Comput. Phys..
[4] Alexandre M. Tartakovsky,et al. Immiscible front evolution in randomly heterogeneous porous media , 2003 .
[5] M. Webb,et al. Quantification of modelling uncertainties in a large ensemble of climate change simulations , 2004, Nature.
[6] D. Ginsbourger,et al. Additive Covariance Kernels for High-Dimensional Gaussian Process Modeling , 2011, 1111.6233.
[7] Pierre Sagaut,et al. A hybrid anchored-ANOVA - POD/Kriging method for uncertainty quantification in unsteady high-fidelity CFD simulations , 2016, J. Comput. Phys..
[8] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[9] Ming Jian Zuo,et al. A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis , 2018, Reliab. Eng. Syst. Saf..
[10] Tag Gon Kim,et al. Specification of multi-resolution modeling space for multi-resolution system simulation , 2013, Simul..
[11] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[12] Andrea Barth,et al. Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.
[13] David A. Barajas-Solano,et al. Physics-Informed CoKriging: A Gaussian-Process-Regression-Based Multifidelity Method for Data-Model Convergence , 2018, J. Comput. Phys..
[14] David A. Cohn,et al. Active Learning with Statistical Models , 1996, NIPS.
[15] Guang Lin,et al. An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media , 2009 .
[16] Brian Berkowitz,et al. Mixing-induced precipitation and porosity evolution in porous media , 2005 .
[17] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[18] A. O'Hagan,et al. Predicting the output from a complex computer code when fast approximations are available , 2000 .
[19] Daniele Venturi,et al. Multi-fidelity Gaussian process regression for prediction of random fields , 2017, J. Comput. Phys..
[20] Paris Perdikaris,et al. Machine learning of linear differential equations using Gaussian processes , 2017, J. Comput. Phys..
[21] Thomas J. Santner,et al. Design and analysis of computer experiments , 1998 .
[22] Alexey Chernov,et al. Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems , 2015, Numerische Mathematik.
[23] Geir Evensen,et al. The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .
[24] Alexandre M. Tartakovsky,et al. A Comparison of Closures for Stochastic Advection-Diffusion Equations , 2013, SIAM/ASA J. Uncertain. Quantification.
[25] Houman Owhadi,et al. Bayesian Numerical Homogenization , 2014, Multiscale Model. Simul..
[26] Dongbin Xiu,et al. Multi-fidelity stochastic collocation method for computation of statistical moments , 2017, J. Comput. Phys..