Signal-to-Noise Ratio Improvement based on the Discrete Wavelet Transform in Ultrasonic Defectoscopy

In ultrasonic testing it is very important to recognize the fault echoes buried in a noisy signal. The fault echo characterizes a flaw in the material. An important requirement on ultrasonic signal filtering is zero-time shift, because the position of ultrasonic echoes is essential. This requirement is accomplished using the discrete wavelet transform (DWT), which is used for reducing the signal-to-noise ratio. This paper evaluates the quality of filtering using the discrete wavelet transform. Additional computer simulations of the proposed algorithms are presented.

[1]  S.S. Udpa,et al.  Frequency invariant classification of ultrasonic weld inspection signals , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[2]  Tim Edwards,et al.  Discrete Wavelet Transforms: Theory and Implementation , 1991 .