On the linear codes over the ring Rp
暂无分享,去创建一个
[1] Yasemin Cengellenmis,et al. On quantum codes obtained from cyclic codes over A2 , 2015 .
[2] Shor,et al. Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[3] Irfan Siap,et al. Quantum codes from cyclic codes over a class of nonchain rings , 2015, 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO).
[4] Ali Ghrayeb,et al. On the Construction of Skew Quasi-Cyclic Codes , 2008, IEEE Transactions on Information Theory.
[5] Taher Abualrub,et al. On θ-cyclic codes over F2 + vF2 , 2012 .
[6] Patrick Solé,et al. On the algebraic structure of quasi-cyclic codes III: generator theory , 2005, IEEE Transactions on Information Theory.
[7] Irfan Siap,et al. Structure of codes over the ring Z3[v]/(v3-v) , 2013, Appl. Algebra Eng. Commun. Comput..
[8] Steven T. Dougherty,et al. Codes over an infinite family of rings with a Gray map , 2014, Des. Codes Cryptogr..
[9] Mohammad Ashraf,et al. Quantum codes from cyclic codes over F3 + vF3 , 2014 .
[10] Maheshanand Bhaintwal,et al. On quasi-cyclic codes over $${\mathbb{Z}_q}$$ , 2009, Applicable Algebra in Engineering, Communication and Computing.
[11] Wenping Ma,et al. Gray Map and Quantum Codes over the Ring F_2+uF_2+u^2F_2 , 2011, 2011IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications.
[12] Steane,et al. Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[13] Jian Gao,et al. Skew Generalized Quasi-Cyclic Codes over Finite Fields , 2013, ArXiv.
[14] A. Dertli,et al. On the Codes over a Semilocal Finite Ring , 2015 .
[15] Shixin Zhu,et al. QUATERNARY CONSTRUCTION OF QUANTUM CODES FROM CYCLIC CODES OVER $\mathbb{F}_4 + u\mathbb{F}_4$ , 2011 .
[16] Patrick Solé,et al. Skew constacyclic codes over Galois rings , 2008, Adv. Math. Commun..
[17] N. Sloane,et al. Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.
[18] Felix Ulmer,et al. Skew-cyclic codes , 2006, Applicable Algebra in Engineering, Communication and Computing.
[19] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[20] Wenping Ma,et al. QUANTUM CODES FROM CYCLIC CODES OVER FINITE RING , 2009 .
[21] I. Siap,et al. Cyclic and constacyclic codes over a non-chain ring , 2014 .
[22] Maheshanand Bhaintwal. Skew quasi-cyclic codes over Galois rings , 2012, Des. Codes Cryptogr..
[23] Felix Ulmer,et al. Coding with skew polynomial rings , 2009, J. Symb. Comput..
[24] Shixin Zhu,et al. (1+u) constacyclic and cyclic codes over F2+uF2 , 2006, Appl. Math. Lett..
[25] Patanee Udomkavanich,et al. Skew constacyclic codes over finite chain rings , 2010, Adv. Math. Commun..
[26] T. Beth,et al. On optimal quantum codes , 2003, quant-ph/0312164.
[27] Maheshanand Bhaintwal,et al. On Quasi-cyclic Codes over Integer Residue Rings , 2007, AAECC.
[28] Patrick Solé,et al. On the Algebraic Structure of Quasi-cyclic Codes II: Chain Rings , 2003, Des. Codes Cryptogr..
[29] Jian Gao. SKEW CYCLIC CODES OVER Fp+ vFp , 2013 .
[30] Mingzhong Wu. Skew Cyclic and Quasi-Cyclic Codes of Arbitrary Length over Galois Rings , 2013 .
[31] Quantum codes over the ring F_2 + uF_2 + u^2F_2 + ... + u^mF_2 , 2015 .
[32] Shixin Zhu,et al. A class of constacyclic codes over Fp+vFp and its Gray image , 2011, Discret. Math..
[33] Irfan Siap,et al. Structure of codes over the ring $$Z_{3}[v]/\langle v^{3}-v\rangle $$Z3[v]/〈v3−v〉 , 2013, Applicable Algebra in Engineering, Communication and Computing.
[34] Patrick Solé,et al. On the algebraic structure of quasi-cyclic codes I: Finite fields , 2001, IEEE Trans. Inf. Theory.
[35] Jianfa Qian. Quantum Codes from Cyclic Codes over $F_2+vF_2$ , 2013 .
[36] Jian Gao,et al. Some results on linear codes over $$\mathbb {F}_p+u\mathbb {F}_p+u^2\mathbb {F}_p$$Fp+uFp+u2Fp , 2015 .
[37] Taher Abualrub,et al. Skew cyclic codes of arbitrary length , 2011, Int. J. Inf. Coding Theory.