Biochemical regulation of the three different states of the cholecystokinin (CCK) receptor in pancreatic acini.

[1]  J. Baldassare,et al.  Effects of cholecystokinin (CCK) and other secretagogues on isoforms of protein kinase C (PKC) in pancreatic acini. , 1994, Biochimica et biophysica acta.

[2]  D. Metz,et al.  Characterization of the three different states of the cholecystokinin (CCK) receptor in pancreatic acini. , 1994, Biochimica et biophysica acta.

[3]  S. Shenolikar,et al.  Control of cholecystokinin receptor dephosphorylation in pancreatic acinar cells. , 1993, The Journal of biological chemistry.

[4]  R. Jensen,et al.  Occupation of low-affinity cholecystokinin (CCK) receptors by CCK activates signal transduction and stimulates amylase secretion in pancreatic acinar cells. , 1993, Biochimica et biophysica acta.

[5]  S. Wank,et al.  Cibacron blue-induced enhancement of agonist binding to cholecystokinin (CCK) receptors in solubilized pancreatic membranes. , 1993, Biochimica et biophysica acta.

[6]  J. Williams,et al.  U73122 inhibits Ca2+ oscillations in response to cholecystokinin and carbachol but not to JMV-180 in rat pancreatic acinar cells. , 1992, The Journal of biological chemistry.

[7]  C. Delporte,et al.  Functional cholecystokinin receptors are distinguished kinetically by biotinyl-Tyr-Gly-(Thr28,Nle31)CCK(25-33) in rat pancreatic acini. , 1991, Biochimica et biophysica acta.

[8]  R. Kahn Fluoride is not an activator of the smaller (20-25 kDa) GTP-binding proteins. , 1991, The Journal of biological chemistry.

[9]  R. Jensen,et al.  Down-regulation and recycling of high affinity cholecystokinin receptors on pancreatic acinar cells. , 1991, The Journal of biological chemistry.

[10]  D. Yule,et al.  Mastoparan induces oscillations of cytosolic Ca2+ in rat pancreatic acinar cells. , 1991, Biochemical and biophysical research communications.

[11]  F. Gorelick,et al.  Agonist-regulated phosphorylation of the pancreatic cholecystokinin receptor. , 1991, The Journal of biological chemistry.

[12]  E. Ross,et al.  Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. , 1990, The Journal of biological chemistry.

[13]  Elliott M. Ross,et al.  Signal sorting and amplification through G protein-coupled receptors , 1989, Neuron.

[14]  M. Bock,et al.  Characterization of the binding of [3H]L-365,260: a new potent and selective brain cholecystokinin (CCK-B) and gastrin receptor antagonist radioligand. , 1989, Molecular pharmacology.

[15]  R. W. Barrett,et al.  Type-A cholecystokinin receptors in CHP212 neuroblastoma cells: evidence for association with G protein and activation of phosphoinositide hydrolysis. , 1989, Molecular pharmacology.

[16]  E. Ross,et al.  Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). , 1988, The Journal of biological chemistry.

[17]  J. Bigay,et al.  Fluoride complexes of aluminium or beryllium act on G‐proteins as reversibly bound analogues of the gamma phosphate of GTP. , 1987, The EMBO journal.

[18]  John A. Williams,et al.  Cholecystokinin induces the interaction of its receptor with a guanine nucleotide binding protein , 1987, Regulatory Peptides.

[19]  R. Chang,et al.  Characterization of the binding of [3H]-(+/-)-L-364,718: a new potent, nonpeptide cholecystokinin antagonist radioligand selective for peripheral receptors. , 1986, Molecular pharmacology.

[20]  D. B. Burnham,et al.  Stimulus-secretion coupling in pancreatic acinar cells. , 1984 .

[21]  R. Jensen,et al.  Receptors for secretagogues on pancreatic acinar cells. , 1984, Journal of pediatric gastroenterology and nutrition.

[22]  H. Luthman,et al.  High efficiency polyoma DNA transfection of chloroquine treated cells. , 1983, Nucleic acids research.

[23]  R. Jensen,et al.  Receptor for secretagogues on pancreatic acinar cells. , 1980, The American journal of physiology.

[24]  P. Robberecht,et al.  The interaction of caerulein with the rat pancreas. 1. Specific binding of [3H]caerulein on plasma membranes and evidence for negative cooperativity. , 1978, European journal of biochemistry.

[25]  P. de Neef,et al.  The interaction of caerulein with the rat pancreas. 2. Specific binding of [3H]caerulein on dispersed acinar cells. , 1978, European journal of biochemistry.