A new universal resample-stable bootstrap-based stopping criterion for PLS component construction
暂无分享,去创建一个
Myriam Maumy-Bertrand | Frédéric Bertrand | Jérémy Magnanensi | Nicolas Meyer | M. Maumy-Bertrand | F. Bertrand | Nicolas Meyer | Jérémy Magnanensi
[1] F. A. Coller,et al. THE PROGNOSTIC SIGNIFICANCE OF DIRECT EXTENSION OF CARCINOMA OF THE COLON AND RECTUM , 1954, Annals of surgery.
[2] B. Efron. Bootstrap Methods: Another Look at the Jackknife , 1979 .
[3] R. Gentleman,et al. Classification Using Generalized Partial Least Squares , 2005 .
[4] S. Wold,et al. The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses , 1984 .
[5] H. Akaike. A new look at the statistical model identification , 1974 .
[6] A. Höskuldsson. PLS regression methods , 1988 .
[7] S. Wold,et al. A randomization test for PLS component selection , 2007 .
[8] Agnar Höskuldsson,et al. Dimension of linear models , 1996 .
[9] Wojtek J. Krzanowski,et al. Cross-Validation in Principal Component Analysis , 1987 .
[10] S. Wold,et al. The multivariate calibration problem in chemistry solved by the PLS method , 1983 .
[11] Roman Rosipal,et al. Overview and Recent Advances in Partial Least Squares , 2005, SLSFS.
[12] John H. Kalivas,et al. Graphical diagnostics for regression model determinations with consideration of the bias/variance trade-off , 2002 .
[13] V. E. Vinzi,et al. Bootstrap-based Q̂kh2 for the selection of components and variables in PLS regression , 2003 .
[14] Bjørn-Helge Mevik,et al. Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR) , 2004 .
[15] B. Minasny. The Elements of Statistical Learning, Second Edition, Trevor Hastie, Robert Tishirani, Jerome Friedman. (2009), Springer Series in Statistics, ISBN 0172-7397, 745 pp , 2009 .
[16] Michel Tenenhaus,et al. PLS generalised linear regression , 2005, Comput. Stat. Data Anal..
[17] Douglas N. Rutledge,et al. An evaluation of the PoLiSh smoothed regression and the Monte Carlo Cross-Validation for the determination of the complexity of a PLS model , 2003 .
[18] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[19] A. Boulesteix. PLS Dimension Reduction for Classification with Microarray Data , 2004, Statistical applications in genetics and molecular biology.
[20] S. Wold,et al. PLS-regression: a basic tool of chemometrics , 2001 .
[21] D. W. Osten,et al. Selection of optimal regression models via cross‐validation , 1988 .
[22] Ron Kohavi,et al. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.
[23] Danh V. Nguyen,et al. Tumor classification by partial least squares using microarray gene expression data , 2002, Bioinform..
[24] S. T. Buckland,et al. An Introduction to the Bootstrap. , 1994 .
[25] Welch Bl. THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED , 1947 .
[26] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[27] David Hinkley,et al. Bootstrap Methods: Another Look at the Jackknife , 2008 .
[28] B. Marx. Iteratively reweighted partial least squares estimation for generalized linear regression , 1996 .
[29] J. Fox. Bootstrapping Regression Models , 2002 .
[30] Michael C. Denham,et al. Choosing the number of factors in partial least squares regression: estimating and minimizing the mean squared error of prediction , 2000 .
[31] R. Manne. Analysis of two partial-least-squares algorithms for multivariate calibration , 1987 .
[32] P. Bachellier,et al. Allelotyping analyses of synchronous primary and metastasis CIN colon cancers identified different subtypes , 2007, International journal of cancer.
[33] F. Bertrand,et al. Comparaison de variantes de régressions logistiques PLS et de régression PLS sur variables qualitatives : application aux données d'allélotypage , 2010 .
[34] M. P. Gómez-Carracedo,et al. Selecting the optimum number of partial least squares components for the calibration of attenuated total reflectance-mid-infrared spectra of undesigned kerosene samples. , 2007, Analytica chimica acta.
[35] Elaine B. Martin,et al. Model selection for partial least squares regression , 2002 .
[36] R. Wehrens,et al. Bootstrapping principal component regression models , 1997 .
[37] Anne-Laure Boulesteix,et al. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data , 2006, Briefings Bioinform..
[38] I. Wakeling,et al. A test of significance for partial least squares regression , 1993 .
[39] E. V. Thomas,et al. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information , 1988 .
[40] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[41] Hilko van der Voet,et al. Comparing the predictive accuracy of models using a simple randomization test , 1994 .
[42] Masashi Sugiyama,et al. The Degrees of Freedom of Partial Least Squares Regression , 2010, 1002.4112.