Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces.

Understanding thermal transport in nanostructured materials is important for the development of energy conversion applications and the thermal management of microelectronic and optoelectronic devices. Most nanostructures interact through van der Waals interactions, and these interactions typically lead to a reduction in thermal transport. Here, we show that the thermal conductivity of a bundle of boron nanoribbons can be significantly higher than that of a single free-standing nanoribbon. Moreover, the thermal conductivity of the bundle can be switched between the enhanced values and that of a single nanoribbon by wetting the van der Waals interface between the nanoribbons with various solutions.

[1]  Eric Pop,et al.  Imaging dissipation and hot spots in carbon nanotube network transistors , 2011 .

[2]  Choongho Yu,et al.  Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). , 2010, ACS nano.

[3]  Berend Smit,et al.  Molecular Dynamics Simulations , 2002 .

[4]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[5]  S. Wong,et al.  Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates , 1996, Microelectromechanical Systems (MEMS).

[6]  Martin L Dunn,et al.  Ultrastrong adhesion of graphene membranes. , 2011, Nature nanotechnology.

[7]  C. Dames Thermal materials: Pulling together to control heat flow. , 2012, Nature nanotechnology.

[8]  Rodney S. Ruoff,et al.  Crystalline Boron Nanoribbons: Synthesis and Characterization , 2004 .

[9]  K. Ploog,et al.  B48B2C2 und B48B2N2, zwei Nichtmetallboride mit der Struktur des sog. I tetragonalen Bors , 1972 .

[10]  M. Meyyappan,et al.  Thermal Interface Properties of Cu-filled Vertically Aligned Carbon Nanofiber Arrays , 2004 .

[11]  Ming Hu,et al.  Phonon interference at self-assembled monolayer interfaces: Molecular dynamics simulations , 2010 .

[12]  A. Majumdar,et al.  Thermal conductance and thermopower of an individual single-wall carbon nanotube. , 2005, Nano letters.

[13]  Li Shi,et al.  Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device , 2003 .

[14]  G. Shivakumar,et al.  Approximations of Fuchs-Sondheimer theory for the case of total diffuse scattering in thin films , 1982 .

[15]  Equilibrium Molecular Dynamics Study of Lattice Thermal Conductivity/Conductance of Au-SAM-Au Junctions , 2009, 0905.2008.

[16]  Barrett E. Eichler,et al.  Synthesis and Characterization of , 2001, Angewandte Chemie.

[17]  B. Tidor Molecular dynamics simulations , 1997, Current Biology.

[18]  Max Shtein,et al.  Thermal boundary resistance of copper phthalocyanine-metal interface , 2011 .

[19]  Li Shi,et al.  Two-Dimensional Phonon Transport in Supported Graphene , 2010, Science.

[20]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[21]  Arun Majumdar,et al.  Thermal conductance of thin silicon nanowires. , 2008, Physical review letters.

[22]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[23]  Hugh W. Coleman,et al.  Experimentation and Uncertainty Analysis for Engineers , 1989 .

[24]  A. Majumdar,et al.  Room temperature thermal conductance of alkanedithiol self-assembled monolayers , 2006 .

[25]  M. Roukes,et al.  Stiction, adhesion energy, and the Casimir effect in micromechanical systems , 2001 .

[26]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[27]  G. A. Slack,et al.  THERMAL CONDUCTIVITY OF BORON AND SOME BORON COMPOUNDS. , 1971 .

[28]  Wenqing Zhang,et al.  Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. , 2010, ACS nano.

[29]  Tony L. Wahl,et al.  Experimentation and Uncertainty Analysis for Engineers, 2nd Ed. , 1999 .

[30]  Ravi Prasher,et al.  Acoustic mismatch model for thermal contact resistance of van der Waals contacts , 2009 .

[31]  D. Schüler,et al.  Synthesis and Characterization , 2009 .