Cosmology from cosmic shear with Dark Energy Survey science verification data

We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find sigma8(Omegam/0.3 )0.5=0.81 ±0.06 (68% confidence), after marginalizing over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About 20% of our error bar comes from marginalizing over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both data sets. Our uncertainties are ˜30 % larger than those from CFHTLenS when we carry out a comparable analysis of the two data sets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of sigma8(Omegam/0.3 )0.5 is present regardless of the value of w .

C. B. D'Andrea | D. A. Finley | A. Roodman | D. W. Gerdes | D. J. James | M. Soares-Santos | H. T. Diehl | D. L. DePoy | R. G. McMahon | E. Buckley-Geer | A. Amara | K. Honscheid | A. Palmese | D. Bacon | D. Brooks | G. Tarle | E. Bertin | R. A. Gruendl | G. M. Bernstein | A. Drlica-Wagner | A. K. Romer | I. Sevilla-Noarbe | R. Armstrong | R. C. Nichol | M. Banerji | A. Benoit-L'evy | A. Carnero Rosell | L. N. da Costa | S. Desai | P. Doel | T. F. Eifler | A. Fausti Neto | J. Frieman | D. Gruen | K. Kuehn | N. Kuropatkin | O. Lahav | M. March | J. L. Marshall | P. Martini | B. Nord | R. Ogando | A. A. Plazas | E. Sanchez | F. Sobreira | E. Suchyta | M. E. C. Swanson | J. Estrada | B. Flaugher | M. T. Busha | R. H. Wechsler | M. R. Becker | B. Leistedt | F. B. Abdalla | A. E. Evrard | J. Zuntz | J. P. Dietrich | C. Bruderer | D. Capozzi | P. Melchior | F. J. Castander | P. Fosalba | R. Miquel | M. A. Troxel | J. Annis | M. Jarvis | N. MacCrann | M. Carrasco Kind | J. Carretero | G. Gutierrez | A. R. Walker | S. Dodelson | M. Hirsch | C. Bonnett | A. Refregier | E. Neilsen | S. Allam | M. Crocce | V. Vikram | Y. Zhang | A. Kravtsov | E. M. Huff | H. Lin | D. Thomas | A. Nicola | R. Nichol | D. Gerdes | J. Frieman | O. Lahav | F. Castander | P. Fosalba | J. Weller | F. Abdalla | J. Mohr | D. Bacon | J. García-Bellido | D. Kirk | D. Capozzi | A. Rosell | L. Costa | K. Honscheid | R. McMahon | R. Ogando | N. Roe | E. Rykoff | F. Sobreira | M. Swanson | S. Bridle | C. Bonnett | G. Bernstein | M. Hirsch | A. Amara | B. Rowe | M. Banerji | G. Efstathiou | Peter Melchior | M. Kind | R. Gruendl | A. Palmese | W. Hartley | J. Annis | H. Peiris | M. Sako | S. Allam | H. Diehl | I. Sevilla-Noarbe | R. Wechsler | E. Bertin | D. Brooks | E. Buckley-Geer | D. Burke | J. Carretero | M. Crocce | C. Cunha | C. D'Andrea | S. Desai | P. Doel | A. Drlica-Wagner | T. Eifler | A. Evrard | B. Flaugher | E. Gaztañaga | D. Gruen | G. Gutiérrez | D. James | K. Kuehn | N. Kuropatkin | M. Lima | R. Miquel | E. Neilsen | A. Plazas | A. Romer | E. Suchyta | G. Tarlé | A. Walker | J. Zuntz | E. Sheldon | T. Abbott | M. Soares-Santos | A. Benoit-Lévy | E. Krause | M. March | E. Sánchez | J. Blazek | J. Dietrich | S. Dodelson | J. Estrada | D. Finley | B. Jain | P. Martini | B. Nord | A. Réfrégier | I. Sadeh | J. Thaler | D. Thomas | V. Vikram | Y. Zhang | D. Depoy | S. Kent | M. Troxel | R. Bernstein | R. Armstrong | A. Bauer | E. Huff | N. MacCrann | A. Nicola | C. Sabiu | M. Jarvis | T. Kacprzak | O. Friedrich | M. Becker | B. Leistedt | A. Kravtsov | M. Busha | C. S'anchez | C. Gangkofner | J. Clampitt | E. Fernandez | E. Baxter | S. Samuroff | J. Kwan | R. A. Bernstein | D. L. Burke | C. E. Cunha | E. Fernandez | E. Gaztanaga | B. Jain | E. Krause | M. Lima | J. J. Mohr | E. S. Rykoff | J. Weller | G. Efstathiou | H. V. Peiris | D. Kirk | W. Hartley | C. Chang | T. Kacprzak | E. Sheldon | A. H. Bauer | S. Kent | C. J. Miller | M. Sako | R. C. Smith | J. Thaler | N. Roe | J. Blazek | R. Das | T. S. Li | E. Baxter | O. Friedrich | S. Samuroff | C. S'anchez | S. L. Bridle | I. Sadeh | J. Garcia-Bellido | B. Erickson | J. Kwan | B. Erickson | C. Bruderer | C. Gangkofner | B. Rowe | J. Clampitt | T. Abbott | The Dark Energy Survey Collaboration | C. Sabiu | H. Seo | H. Seo | M. C. Kind | A. C. Rosell | R. Das | A. Roodman | J. Marshall | C. Miller | A. F. Neto | C. Chang | H. Lin | R. Smith | T. Li | T. Li | H. Lin | T. Li | E. Fernandez | M. Swanson | R. C. Smith | Risa Wechsler

[1]  Ashley J. Ross,et al.  The clustering of the SDSS DR7 Main Galaxy Sample I: a 4 per cent distance measure at z=0.15 , 2014, 1409.3242.

[2]  A. Moss,et al.  Evidence for massive neutrinos from cosmic microwave background and lensing observations. , 2013, Physical review letters.

[3]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[4]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[5]  David Spergel,et al.  Shear power spectrum reconstruction using the pseudo-spectrum method , 2010, 1004.3542.

[6]  Dealing with systematics in cosmic shear studies: New results from the VIRMOS-Descart survey , 2004, astro-ph/0406468.

[7]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[8]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[9]  C. J. Macdonald,et al.  Photometric Redshift Biases from Galaxy Evolution , 2010, 1002.0008.

[10]  S. Bridle,et al.  im3shape: a maximum likelihood galaxy shear measurement code for cosmic gravitational lensing , 2013, 1302.0183.

[11]  Mustapha Ishak,et al.  The Intrinsic Alignment of Galaxies and its Impact on Weak Gravitational Lensing in an Era of Precision Cosmology , 2014, 1407.6990.

[12]  J. Kormendy in Nearly Normal Galaxies , 1986 .

[13]  Alina Kiessling,et al.  Galaxy Alignments: An Overview , 2015, 1504.05456.

[14]  D. Schlegel,et al.  Seeing in the dark – II. Cosmic shear in the Sloan Digital Sky Survey , 2011, 1112.3143.

[15]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[16]  Christopher M. Hirata,et al.  Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.

[17]  S. Bridle,et al.  Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune? , 2014, 1408.4742.

[18]  Yannick Mellier,et al.  Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS , 2009, 0911.0053.

[19]  S. More,et al.  Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies , 2014, 1411.1755.

[20]  Tim Eifler,et al.  Combining probes of large-scale structure with COSMOLIKE , 2013, 1302.2401.

[21]  T. Kitching,et al.  Galaxy Alignments: Theory, Modelling & Simulations , 2015, 1504.05546.

[22]  T. Eifler,et al.  The impact of intrinsic alignment on current and future cosmic shear surveys , 2015, 1506.08730.

[23]  J. Kneib,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS anisotropic galaxy clustering , 2013, 1312.4889.

[24]  Sarah Bridle,et al.  Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements , 2007, 0705.0166.

[25]  Tamás Budavári,et al.  Astronomy and Computing , 2013 .

[26]  Gary M. Bernstein,et al.  COMPREHENSIVE TWO-POINT ANALYSES OF WEAK GRAVITATIONAL LENSING SURVEYS , 2008, 0808.3400.

[27]  Edwin Valentijn,et al.  Gravitational lensing analysis of the Kilo-Degree Survey , 2015, 1507.00738.

[28]  Stefan Hilbert,et al.  COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. I. JOINT CONSTRAINTS ON ΩM AND σ8 WITH A TWO-DIMENSIONAL ANALYSIS , 2012, 1210.2732.

[29]  P. A. R. Ade,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND GRAVITATIONAL LENSING POTENTIAL FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2014, 1412.4760.

[30]  A. Fontana,et al.  A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION , 2013, 1308.5353.

[31]  Heidelberg,et al.  Weighing the giants – IV. Cosmology and neutrino mass , 2014, 1407.4516.

[32]  Scott Dodelson,et al.  The Effect of Covariance Estimator Error on Cosmological Parameter Constraints , 2013, 1304.2593.

[33]  Tim Eifler,et al.  Dependence of cosmic shear covariances on cosmology - Impact on parameter estimation , 2008, 0810.4254.

[34]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[35]  J. Blazek,et al.  Testing the tidal alignment model of galaxy intrinsic alignment , 2011, 1101.4017.

[36]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[37]  Saba Sehrish,et al.  CosmoSIS: Modular cosmological parameter estimation , 2014, Astron. Comput..

[38]  Scott Dodelson,et al.  Accounting for Baryons in Cosmological Constraints from Cosmic Shear , 2012, 1212.1177.

[39]  H. Hoekstra,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.0032.

[40]  University College London,et al.  Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample , 2010, 1008.3491.

[41]  Cambridge,et al.  Detection of weak gravitational lensing by large-scale structure , 2000 .

[42]  Gary Bernstein,et al.  Dark Energy Constraints from the CTIO Lensing Survey , 2006 .

[43]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[44]  R. Nichol,et al.  Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data , 2014, 1405.4285.

[45]  T. Schrabback,et al.  GaBoDS: The Garching-Bonn Deep Survey: VI. Cosmic shear analysis , 2006, astro-ph/0606571.

[46]  H. Hoekstra,et al.  Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.

[47]  Wayne Hu,et al.  Effects of Photometric Redshift Uncertainties on Weak-Lensing Tomography , 2005 .

[48]  E. Bertin,et al.  MODELING THE TRANSFER FUNCTION FOR THE DARK ENERGY SURVEY , 2014, 1411.0032.

[49]  Matthew R. Becker,et al.  Fourier Band-Power E/B-mode Estimators for Cosmic Shear , 2014, 1412.3851.

[50]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions , 2012, 1212.3327.

[51]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[52]  P. Hall,et al.  A Measurement of Weak Lensing by Large-Scale Structure in Red-Sequence Cluster Survey Fields , 2002, astro-ph/0202285.

[53]  P. Schneider,et al.  A bias in cosmic shear from galaxy selection: results from ray-tracing simulations , 2010, 1010.0010.

[54]  Uros Seljak,et al.  Cosmological Model Predictions for Weak Lensing: Linear and Nonlinear Regimes , 1996, astro-ph/9611077.

[55]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[56]  R. Croft,et al.  Weak-Lensing Surveys and the Intrinsic Correlation of Galaxy Ellipticities , 2000, astro-ph/0005384.

[57]  Cosmic Shear Statistics in the Suprime-Cam 2.1 Square Degree Field: Constraints on Ωm and σ8* , 2002, astro-ph/0210450.

[58]  R. Nichol,et al.  Cosmic shear measurements with Dark Energy Survey science verification data , 2015, 1507.05598.

[59]  N. Hambly,et al.  The SuperCOSMOS Sky Survey . Paper I : Introduction and Description , 2001 .

[60]  Scott Dodelson,et al.  Accounting for baryonic effects in cosmic shear tomography: determining a minimal set of nuisance parameters using PCA , 2014, 1405.7423.

[61]  O. Lahav,et al.  The Cosmological Parameters 2014 , 2014, 1401.1389.

[62]  Iftach Sadeh,et al.  ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning , 2015, 1507.00490.

[63]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[64]  H. Hoekstra,et al.  3D cosmic shear: cosmology from CFHTLenS , 2014, 1401.6842.

[65]  Shahab Joudaki,et al.  An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models , 2015, 1505.07833.

[66]  H. Hoekstra,et al.  Galaxy Alignments: Observations and Impact on Cosmology , 2015, 1504.05465.

[67]  Y. Mellier,et al.  COSMOS: Three-dimensional Weak Lensing and the Growth of Structure , 2007, astro-ph/0701480.

[68]  Ue-Li Pen,et al.  Spin-induced Galaxy Alignments and Their Implications for Weak-Lensing Measurements , 2000, astro-ph/0009052.

[69]  J. Blazek,et al.  Tidal alignment of galaxies , 2015, 1504.02510.

[70]  R. J. Brunner,et al.  TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.

[71]  Benjamin Joachimi,et al.  Putting the precision in precision cosmology: How accurate should your data covariance matrix be? , 2012, 1212.4359.

[72]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[73]  P. Schneider,et al.  Detection of correlated galaxy ellipticities on CFHT data: first evidence for gravitational lensing by large-scale structures , 2000, astro-ph/0002500.

[74]  Separating the early universe from the late universe: Cosmological parameter estimation beyond the black box , 2002, astro-ph/0207047.

[75]  Alexey Vikhlinin,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.

[76]  J. G. Jernigan,et al.  Astronomical Data Analysis Software and Systems XX , 2011 .

[77]  David N. Spergel,et al.  THE ATACAMA COSMOLOGY TELESCOPE: LENSING OF CMB TEMPERATURE AND POLARIZATION DERIVED FROM COSMIC INFRARED BACKGROUND CROSS-CORRELATION , 2014, 1412.0626.

[78]  Jeffrey M. Kubo,et al.  THE SDSS CO-ADD: COSMIC SHEAR MEASUREMENT , 2011, 1111.6622.

[79]  I. Tereno,et al.  Cosmic shear analysis with CFHTLS deep data , 2005, astro-ph/0511090.

[80]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[81]  C. A. Oxborrow,et al.  Planck 2015 results. XV. Gravitational lensing , 2015, 1502.01591.

[82]  Roger D. Blandford,et al.  Intrinsic and extrinsic galaxy alignment , 2000, astro-ph/0005470.

[83]  D. Kirk,et al.  The cosmological impact of intrinsic alignment model choice for cosmic shear , 2011, 1112.4752.

[84]  S. O. Physics,et al.  The SuperCOSMOS Sky Survey – I. Introduction and description , 2001, astro-ph/0108286.

[85]  V. Springel,et al.  The Influence of Baryons on the Clustering of Matter and Weak-Lensing Surveys , 2005, astro-ph/0512426.

[86]  Joop Schaye,et al.  The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology , 2011, 1104.1174.

[87]  M. White,et al.  Dependence of the cosmic microwave background lensing power spectrum on the matter density , 2014, 1406.5459.

[88]  Douglas H. Rudd,et al.  The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 08/29/06 EFFECTS OF BARYONS AND DISSIPATION ON THE MATTER POWER SPECTRUM , 2007 .

[89]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[90]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[91]  David M. Wittman,et al.  Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales , 2000, Nature.

[92]  C. Bonnett Using neural networks to estimate redshift distributions. An application to CFHTLenS , 2013, 1312.1287.

[93]  Christopher J. Miller,et al.  Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data , 2015 .

[94]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[95]  S. Dye,et al.  The shear power spectrum from the COMBO-17 survey , 2003 .

[96]  C. Heymans,et al.  Baryons, neutrinos, feedback and weak gravitational lensing , 2014, 1407.4301.

[97]  L. Verde,et al.  No new cosmological concordance with massive sterile neutrinos. , 2014, Physical review letters.

[98]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[99]  R. Nichol,et al.  Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.

[100]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[101]  E. Sheldon An implementation of Bayesian lensing shear measurement , 2014, 1403.7669.

[102]  G. Efstathiou H 0 revisited , 2013, 1311.3461.

[103]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[104]  Farhan Feroz,et al.  SkyNet: Neural network training tool for machine learning in astronomy , 2013 .

[105]  Earl Lawrence,et al.  THE COYOTE UNIVERSE EXTENDED: PRECISION EMULATION OF THE MATTER POWER SPECTRUM , 2013, 1304.7849.

[106]  F. Abdalla,et al.  The WiggleZ Dark Energy Survey: Direct constraints on blue galaxy intrinsic alignments at intermediate redshifts , 2009, 0911.5347.

[107]  A. Zasov Book-Review - Nearly Normal Galaxies - from the Planck Time to the Present , 1989 .

[108]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[109]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[110]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:signs of neutrino mass in current cosmological data sets , 2014, 1403.4599.

[111]  C. B. D'Andrea,et al.  Wide-Field Lensing Mass Maps from DES Science Verification Data: Methodology and Detailed Analysis , 2015, 1504.03002.

[112]  V. Springel,et al.  Gas expulsion by quasar-driven winds as a solution to the overcooling problem in galaxy groups and clusters , 2010, 1008.4799.

[113]  J. Schaye,et al.  The physics driving the cosmic star formation history , 2009, 0909.5196.