DISCONTINUOUS GALERKIN SEMI-LAGRANGIAN METHOD FOR VLASOV-POISSON

We present a discontinuous Galerkin scheme for the numerical approximation of the one-dimensional periodic Vlasov-Poisson equation. The scheme is based on a Galerkin-characteristics method in which the distribution function is projected onto a space of discontinuous functions. We present comparisons with a semi-Lagrangian method to emphasize the good behavior of this scheme when applied to Vlasov-Poisson test cases.

[1]  M. Shoucri Nonlinear evolution of the bump‐on‐tail instability , 1979 .

[2]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[3]  H. Sugama,et al.  Vlasov and Drift Kinetic Simulation Methods Based on the Symplectic Integrator , 2005 .

[4]  P. J. Morrison,et al.  A discontinuous Galerkin method for the Vlasov-Poisson system , 2010, J. Comput. Phys..

[5]  Blanca Ayuso de Dios,et al.  DISCONTINUOUS GALERKIN METHODS FOR THE MULTI-DIMENSIONAL VLASOV–POISSON PROBLEM , 2012 .

[6]  K. W. Morton,et al.  Generalised galerkin methods for hyperbolic problems , 1985 .

[7]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[8]  Eric Sonnendrücker,et al.  A forward semi-Lagrangian method for the numerical solution of the Vlasov equation , 2008, Comput. Phys. Commun..

[9]  David C. Seal,et al.  A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations , 2010, J. Comput. Phys..

[10]  K. W. Morton Shock capturing, fitting and recovery , 1982 .

[11]  José A. Carrillo,et al.  Nonoscillatory Interpolation Methods Applied to Vlasov-Based Models , 2007, SIAM J. Sci. Comput..

[12]  Chi-Wang Shu,et al.  Fourier analysis for discontinuous Galerkin and related methods , 2009 .

[13]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[14]  R. Bermejo Analysis of an algorithm for the Galerkin-characteristic method , 1991 .

[15]  Eric Sonnendrücker,et al.  Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..

[16]  José A. Carrillo,et al.  Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system , 2011 .

[17]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[18]  Endre Süli,et al.  Stability of the Lagrange-Galerkin method with non-exact integration , 1988 .

[19]  C. Cavazzoni,et al.  A Numerical Scheme for the Integration of the Vlasov-Maxwell System of Equations , 2002 .

[20]  Bruno Després,et al.  Uniform Asymptotic Stability of Strang's Explicit Compact Schemes for Linear Advection , 2009, SIAM J. Numer. Anal..

[21]  E. Fijalkow,et al.  A numerical solution to the Vlasov equation , 1999 .

[22]  E. Sonnendrücker,et al.  Comparison of Eulerian Vlasov solvers , 2003 .

[23]  T. Yabe,et al.  Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space , 1999 .

[24]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .