Potential therapeutic radiotracers: preparation, biodistribution and metabolic characteristics of 177Lu-labeled cyclic RGDfK dimer

[1]  Xiaoyuan Chen,et al.  Small-Animal PET of Tumors with 64Cu-Labeled RGD-Bombesin Heterodimer , 2009, Journal of Nuclear Medicine.

[2]  Young-Seung Kim,et al.  Improving tumor uptake and pharmacokinetics of (64)Cu-labeled cyclic RGD peptide dimers with Gly(3) and PEG(4) linkers. , 2009, Bioconjugate chemistry.

[3]  Fan Wang,et al.  Noninvasive imaging of tumor integrin expression using 18F-labeled RGD dimer peptide with PEG4 linkers , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[4]  Fan Wang,et al.  Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN. , 2009, Journal of medicinal chemistry.

[5]  Young-Seung Kim,et al.  Improving tumor-targeting capability and pharmacokinetics of (99m)Tc-labeled cyclic RGD dimers with PEG(4) linkers. , 2009, Molecular pharmaceutics.

[6]  Fan Wang,et al.  68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin αvβ3 PET imaging , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[7]  Young-Seung Kim,et al.  Improving tumor uptake and excretion kinetics of 99mTc-labeled cyclic arginine-glycine-aspartic (RGD) dimers with triglycine linkers. , 2008, Journal of medicinal chemistry.

[8]  Fan Wang,et al.  Integrin αvβ3-Targeted Radioimmunotherapy of Glioblastoma Multiforme , 2008, Clinical Cancer Research.

[9]  Weibo Cai,et al.  Imaging of integrins as biomarkers for tumor angiogenesis. , 2008, Current pharmaceutical design.

[10]  Fan Wang,et al.  Integrin αvβ3‐targeted cancer therapy , 2008 .

[11]  Matthias Glaser,et al.  Phase I Trial of the Positron-Emitting Arg-Gly-Asp (RGD) Peptide Radioligand 18F-AH111585 in Breast Cancer Patients , 2008, Journal of Nuclear Medicine.

[12]  Fan Wang,et al.  Linker effects on biological properties of 111In-labeled DTPA conjugates of a cyclic RGDfK dimer. , 2008, Bioconjugate chemistry.

[13]  Xiaoyuan Chen,et al.  Integrin alpha(v)beta(3)-Targeted Cancer Therapy. , 2008, Drug development research.

[14]  E. Krenning,et al.  Hormonal crises following receptor radionuclide therapy with the radiolabeled somatostatin analogue [177Lu-DOTA0,Tyr3]octreotate , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[15]  Markus Schwaiger,et al.  [18F]Galacto-RGD Positron Emission Tomography for Imaging of αvβ3 Expression on the Neovasculature in Patients with Squamous Cell Carcinoma of the Head and Neck , 2007, Clinical Cancer Research.

[16]  Shuang Liu Radiolabeled Multimeric Cyclic RGD Peptides as Integrin αvβ3 Targeted Radiotracers for Tumor Imaging , 2006 .

[17]  Horst Kessler,et al.  Positron Emission Tomography Using [18F]Galacto-RGD Identifies the Level of Integrin αvβ3 Expression in Man , 2006, Clinical Cancer Research.

[18]  Bing Jia,et al.  99mTc-Labeled Cyclic RGDfK Dimer: Initial Evaluation for SPECT Imaging of Glioma Integrin αvβ3 Expression , 2006 .

[19]  G. Alghisi,et al.  Vascular integrins in tumor angiogenesis: mediators and therapeutic targets. , 2006, Endothelium : journal of endothelial cell research.

[20]  M. Schwaiger,et al.  Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. , 2006, Clinical cancer research : an official journal of the American Association for Cancer Research.

[21]  Shuang Liu Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. , 2006, Molecular pharmaceutics.

[22]  R. Schiffelers,et al.  RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. , 2005, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[23]  J. Debus,et al.  Inhibition of αvβ3 Integrin Survival Signaling Enhances Antiangiogenic and Antitumor Effects of Radiotherapy , 2005, Clinical Cancer Research.

[24]  J. Debus,et al.  Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. , 2005, Clinical cancer research : an official journal of the American Association for Cancer Research.

[25]  Shuang Liu,et al.  The role of coordination chemistry in the development of target-specific radiopharmaceuticals. , 2004, Chemical Society reviews.

[26]  Ryan Park,et al.  MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides. , 2004, Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging.

[27]  H. Jin,et al.  Integrins: roles in cancer development and as treatment targets , 2004, British Journal of Cancer.

[28]  T. Visser,et al.  Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0,d-Phe1,Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy , 1997, European Journal of Nuclear Medicine.

[29]  J. Folkman,et al.  Fundamental concepts of the angiogenic process. , 2003, Current molecular medicine.

[30]  M. Schwaiger,et al.  Radiotracer-based strategies to image angiogenesis. , 2003, The quarterly journal of nuclear medicine : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology.

[31]  S. Liu,et al.  Synthesis and characterization of two (111)In-labeled DTPA-peptide conjugates. , 2001, Bioconjugate chemistry.

[32]  M. Rajopadhye,et al.  (90)Y and (177)Lu labeling of a DOTA-conjugated vitronectin receptor antagonist useful for tumor therapy. , 2001, Bioconjugate chemistry.

[33]  M. Rajopadhye,et al.  Isomerism and solution dynamics of (90)Y-labeled DTPA--biomolecule conjugates. , 2001, Bioconjugate chemistry.

[34]  Shuang Liu,et al.  Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals. , 2001, Bioconjugate chemistry.

[35]  C. Meares,et al.  Enzymatic cleavage of peptide-linked radiolabels from immunoconjugates. , 1999, Bioconjugate chemistry.

[36]  J. Stimmel,et al.  Samarium-153 and lutetium-177 chelation properties of selected macrocyclic and acyclic ligands. , 1998, Nuclear medicine and biology.

[37]  J. Lewis,et al.  Copper radionuclides and radiopharmaceuticals in nuclear medicine. , 1996, Nuclear medicine and biology.

[38]  J. Stimmel,et al.  Yttrium-90 chelation properties of tetraazatetraacetic acid macrocycles, diethylenetriaminepentaacetic acid analogues, and a novel terpyridine acyclic chelator. , 1995, Bioconjugate chemistry.

[39]  D. Cheresh,et al.  Requirement of vascular integrin alpha v beta 3 for angiogenesis. , 1994, Science.

[40]  G. Denardo,et al.  Yttrium-90-labeled monoclonal antibody for therapy: labeling by a new macrocyclic bifunctional chelating agent. , 1990, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[41]  S. Denardo,et al.  Copper chelates as probes of biological systems: stable copper complexes with a macrocyclic bifunctional chelating agent. , 1985, Analytical biochemistry.

[42]  P. Doherty,et al.  Yttrium-90 labeled monoclonal antibody as a potential agent for radioimmunotherapy , 1984 .