Symbolic control of linear systems based on symbolic subsystems

This paper describes an approach to the control of continuous systems through the use of symbolic models describing the system behavior only at a finite number of points in the state space. These symbolic models can be seen as abstract representations of the continuous dynamics enabling the use of algorithmic controller design methods. We identify a class of linear control systems for which the loss of information incurred by working with symbolic subsystems can be compensated by feedback. We also show how to transform symbolic controllers designed for a symbolic subsystem into controllers for the original system. The resulting controllers combine symbolic controller dynamics with continuous feedback control laws and can thus be seen as hybrid systems. Furthermore, if the symbolic controller already accounts for software/hardware requirements, the hybrid controller is guaranteed to enforce the desired specifications by construction thereby reducing the need for formal verification.

[1]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[2]  Anil Nerode,et al.  Hybrid Control Loops, A/D Maps, and Dynamic Specifications , 2002, HSCC.

[3]  Olaf Stursberg,et al.  Comparing Timed and Hybrid Automata as Approximations of Continuous Systems , 1996, Hybrid Systems.

[4]  Anil Nerode,et al.  Models for Hybrid Systems: Automata, Topologies, Controllability, Observability , 1992, Hybrid Systems.

[5]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[6]  Thomas A. Henzinger,et al.  Symbolic Algorithms for Infinite-State Games , 2001, CONCUR.

[7]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[8]  S. Shankar Sastry,et al.  O-Minimal Hybrid Systems , 2000, Math. Control. Signals Syst..

[9]  Paulo Tabuada,et al.  From discrete specifications to hybrid control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[10]  Jörg Raisch,et al.  Discrete Supervisory Control of Hybrid Systems Based on l-Complete Approximations , 2002, Discret. Event Dyn. Syst..

[11]  Bruce H. Krogh,et al.  Verification of infinite-state dynamic systems using approximate quotient transition systems , 2001, IEEE Trans. Autom. Control..

[12]  Christos G. Cassandras,et al.  Introduction to Discrete Event Systems , 1999, The Kluwer International Series on Discrete Event Dynamic Systems.

[13]  Igor Walukiewicz,et al.  Games for synthesis of controllers with partial observation , 2003, Theor. Comput. Sci..

[14]  Paulo Tabuada,et al.  Bisimilar control affine systems , 2004, Syst. Control. Lett..

[15]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[16]  Paulo Tabuada Open Maps, Alternating Simulations and Control Synthesis , 2004, CONCUR.

[17]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[18]  Jan Lunze,et al.  Qualitative modelling of linear dynamical systems with quantized state measurements , 1994, Autom..

[19]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[20]  Thomas A. Henzinger,et al.  Symbolic Model Checking for Rectangular Hybrid Systems , 2000, TACAS.

[21]  P. Caines,et al.  Hierarchical hybrid control systems: a lattice theoretic formulation , 1998, IEEE Trans. Autom. Control..

[22]  Thomas Brihaye,et al.  On O-Minimal Hybrid Systems , 2004, HSCC.

[23]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[24]  Panos J. Antsaklis,et al.  Safety and Reachability of Piecewise Linear Hybrid Dynamical Systems Based on Discrete Abstractions , 2003, Discret. Event Dyn. Syst..

[25]  P. S. Thiagarajan,et al.  Branching time controllers for discrete event systems , 2002, Theor. Comput. Sci..

[26]  S. Shankar Sastry,et al.  Mode Switching Synthesis for Reachability Specifications , 2001, HSCC.

[27]  Ashish Tiwari,et al.  Series of Abstractions for Hybrid Automata , 2002, HSCC.

[28]  Paulo Tabuada,et al.  Bisimulation relations for dynamical, control, and hybrid systems , 2005, Theor. Comput. Sci..

[29]  George J. Pappas Bisimilar linear systems , 2003, Autom..

[30]  Antonio Bicchi,et al.  Optimal Control of Quantized Input Systems , 2002, HSCC.

[31]  Thomas A. Henzinger,et al.  A classification of symbolic transition systems , 2000, TOCL.

[32]  Panos J. Antsaklis,et al.  An invariant‐based approach to the design of hybrid control systems , 2001 .

[33]  Paulo Tabuada,et al.  Flatness and finite bisimulations in discrete time , 2004 .

[34]  Jörg Raisch,et al.  Discrete approximation and supervisory control of continuous systems , 1998, IEEE Trans. Autom. Control..

[35]  Gary J. Balas,et al.  Software-enabled control : information technology for dynamical systems , 2005 .

[36]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[37]  S. Sastry,et al.  Decidable and semi-decidable controller synthesis for classes of discrete time hybrid systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[38]  Paulo Tabuada,et al.  Finite bisimulations of controllable linear systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[39]  Paulo Tabuada,et al.  Linear Time Logic Control of Discrete-Time Linear Systems , 2006, IEEE Transactions on Automatic Control.

[40]  P. S. Thiagarajan,et al.  Open Systems in Reactive Environments: Control and Synthesis , 2000, CONCUR.

[41]  Panos J. Antsaklis,et al.  Supervisory Control of Discrete Event Systems Using Petri Nets , 1998, The International Series on Discrete Event Dynamic Systems.

[42]  Maria Domenica Di Benedetto,et al.  Bisimulation theory for switching linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[43]  George J. Pappas,et al.  Approximate Bisimulations for Nonlinear Dynamical Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[44]  Panos J. Antsaklis,et al.  Hybrid System Modeling and Autonomous Control Systems , 1992, Hybrid Systems.

[45]  Antonio Bicchi,et al.  On the reachability of quantized control systems , 2002, IEEE Trans. Autom. Control..

[46]  Arjan van der Schaft,et al.  Bisimulation of Dynamical Systems , 2004, HSCC.

[47]  D. Hristu-Varsakelis,et al.  On the structural complexity of the motion description language MDLe , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[48]  Tariq Samad,et al.  A ManeuverBased Hybrid Control Architecture for Autonomous Vehicle Motion Planning , 2003 .

[49]  Paulo Tabuada,et al.  Model Checking LTL over Controllable Linear Systems Is Decidable , 2003, HSCC.

[50]  Vijay K. Garg,et al.  Modeling and Control of Logical Discrete Event Systems , 1994 .

[51]  Wolfgang Thomas,et al.  On the Synthesis of Strategies in Infinite Games , 1995, STACS.

[52]  Mireille E. Broucke A Geometric Approach to Bisimulation and Verification of Hybrid Systems , 1999, HSCC.

[53]  Munther A. Dahleh,et al.  Finite automata approximations with error bounds for systems with quantized actuation and measurement: a case study , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[54]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..