A Simple Jerk System with Piecewise Exponential Nonlinearity
暂无分享,去创建一个
[1] O. Rössler. An equation for continuous chaos , 1976 .
[2] Julien Clinton Sprott,et al. Simplest dissipative chaotic flow , 1997 .
[3] J. C. Sprotta. Some simple chaotic jerk functions , 1997 .
[4] Hans Peter Gottlieb,et al. What is the Simplest Jerk Function that Gives Chaos , 1996 .
[5] Julien Clinton Sprott,et al. Elementary chaotic flow , 1999 .
[6] Hoover. Remark on "Some simple chaotic flows" , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[7] O. Rössler. CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS , 1979 .
[8] Julien Clinton Sprott,et al. A new class of chaotic circuit , 2000 .
[9] Ralf Eichhorn,et al. Simple polynomial classes of chaotic jerky dynamics , 2002 .
[10] Julien Clinton Sprott,et al. Simple chaotic systems and circuits , 2000 .
[11] Ralf Eichhorn,et al. Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows , 1998 .
[12] J.-M. Malasoma. What is the simplest dissipative chaotic jerk equation which is parity invariant , 2000 .
[13] J. Sprott,et al. Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[14] Vinod Patidar,et al. Bifurcation and chaos in simple jerk dynamical systems , 2005 .
[15] Stefan J. Linz,et al. Nonlinear dynamical models and jerky motion , 1997 .
[16] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[17] E. Lorenz. Deterministic nonperiodic flow , 1963 .