A Stable Online Self-Constructing Recurrent Neural Network

A new online self-constructing recurrent neural network (SCRNN) model is proposed, of which the network structure could adjust according to the specific problem in real time. If the approximation performance of SCRNN is insufficient, SCRNN can create new neural network state to increase the learning ability. If the neural network state of SCRNN is redundant, it should be removed to simplify the structure of neural network and reduce the computation load;otherwise, if the hidden neuron of SCRNN is significant, it should be retained. Meanwhile, the feedback coefficient is adjusted by synaptic normalization mechanism to ensure the stability of network state. The proposed method effectively generates a recurrent neural model with a highly accurate and compact structure. Simulation results demonstrate that the proposed SCRNN has a self-organizing ability which can determine the structure and parameters of the recurrent neural network automatically. The network has a better stability.