Preparation of Propanols by Glycerol Hydrogenolysis over Bifunctional Nickel-Containing Catalysts

The paper presents the results obtained in studying glycerol hydrogenolysis into 1-propanol and 2-propanol over bifunctional Ni/WO3-TiO2 and Ni/WO3-ZrO2 catalysts in the flow system. Due to the optimal combination of acidic and hydrogenation properties of the heterogeneous catalysts, they exhibit higher performance in glycerol conversion into C3 alcohols, although the process is carried out in rather mild conditions. At the reaction temperature of 250 °C and hydrogen pressure of 3 MPa, the total yield of 1-propanol and 2-propanol reaches 95%, and the glycerol conversion is close to 100%.

[1]  Di Wang,et al.  Ru supported on micro and mesoporous carbons as catalysts for biomass-derived molecules hydrogenation , 2020 .

[2]  L. Kustov,et al.  Hydrodeoxygenation of glycerol into propanols over a Ni/WO3–TiO2 catalyst , 2020 .

[3]  Mariefel V. Olarte,et al.  Hydrotreatment of pyrolysis bio-oil: A review , 2019 .

[4]  E. Chernysheva,et al.  Glycerol to renewable fuel oxygenates. Part I: Comparison between solketal and its methyl ether , 2019, Fuel.

[5]  C. Herrera,et al.  Coupling of glycerol-APR and in situ hydrodeoxygenation of fatty acid to produce hydrocarbons , 2019, Fuel Processing Technology.

[6]  L. M. Gandía,et al.  Syngas production via catalytic oxidative steam reforming of glycerol using a Co/Al coprecipitated catalyst and different bed fillers , 2019, Fuel Processing Technology.

[7]  C. Jin,et al.  Regulation of acidic properties of WO3-ZrO2 for Friedel–Crafts reaction with surfactant , 2019, Catalysis Communications.

[8]  M. Kozłowski,et al.  Glycerol conversion towards valuable fuel blending compounds with the assistance of SO3H-functionalized carbon xerogels and spheres , 2019, Fuel Processing Technology.

[9]  Davi C. Carvalho,et al.  Bio-additive fuels from glycerol acetalization over metals-containing vanadium oxide nanotubes (MeVOx-NT in which, Me = Ni, Co, or Pt) , 2019, Fuel Processing Technology.

[10]  A. Chistyakov,et al.  Original Pt-Sn/Al2O3 catalyst for selective hydrodeoxygenation of vegetable oils , 2017, Energy.

[11]  Yanjun Zhao,et al.  A novel Ag@AgBr-Ag2Mo3O10 ternary core-shell photocatalyst: Energy band modification and additional superoxide radical production , 2018, Applied Surface Science.

[12]  L. Cardozo-Filho,et al.  Study of glycerol etherification with ethanol in fixed bed reactor under high pressure , 2018, Fuel Processing Technology.

[13]  R. Jose,et al.  Hydrothermal syntheses of tungsten doped TiO2 and TiO2/WO3 composite using metal oxide precursors for charge storage applications , 2018 .

[14]  C. Lai WO3-TiO2 Nanocomposite and its Applications: A Review , 2018 .

[15]  M. Paganini,et al.  Photocatalytic activity of TiO2-WO3 mixed oxides in formic acid oxidation , 2017 .

[16]  M. Neurock,et al.  Nature of Catalytically Active Sites in the Supported WO3/ZrO2 Solid Acid System: A Current Perspective , 2017 .

[17]  Wenjun Li,et al.  Fabrication of FeWO4@ZnWO4/ZnO Heterojunction Photocatalyst: Synergistic Effect of ZnWO4/ZnO and FeWO4@ZnWO4/ZnO Heterojunction Structure on the Enhancement of Visible-Light Photocatalytic Activity , 2016 .

[18]  C. Chen,et al.  Catalytic transformation of glycerol to 1-propanol by combining zirconium phosphate and supported Ru catalysts , 2016 .

[19]  F. Mauriello,et al.  Hydrogenolysis vs. aqueous phase reforming (APR) of glycerol promoted by a heterogeneous Pd/Fe catalyst , 2015 .

[20]  C. Liu,et al.  Hydrogenolysis of Glycerol by the Combined Use of Zeolite and Ni/Al2O3 as Catalysts: A Route for Achieving High Selectivity to 1-Propanol , 2014 .

[21]  K. Tomishige,et al.  Catalytic materials for the hydrogenolysis of glycerol to 1,3-propanediol , 2014 .

[22]  A. Nithya,et al.  Synthesis, Surface Acidity and Photocatalytic Activity of WO3/TiO2 Nanocomposites – An Overview , 2014 .

[23]  Yulei Zhu,et al.  Hydrogenolysis of glycerol to 1,3-propanediol over bifunctional catalysts containing Pt and heteropolyacids , 2013 .

[24]  Tao Zhang,et al.  Mesoporous Ti–W oxide: synthesis, characterization, and performance in selective hydrogenolysis of glycerol , 2013 .

[25]  Yulei Zhu,et al.  One-step hydrogenolysis of glycerol to biopropanols over Pt–H4SiW12O40/ZrO2 catalysts , 2012 .

[26]  S. Bennici,et al.  Investigation of the WO3/ZrO2 surface acidic properties for the aqueous hydrolysis of cellobiose , 2012 .

[27]  Lungang Chen,et al.  Aqueous-Phase Hydrogenolysis of Glycerol to 1,3-propanediol Over Pt-H4SiW12O40/SiO2 , 2012, Catalysis Letters.

[28]  H. Friedrich,et al.  A catalytic route to lower alcohols from glycerol using Ni-supported catalysts , 2011 .

[29]  K. Tomishige,et al.  Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir–ReOx/SiO2 catalyst , 2011 .

[30]  M. Eberlin,et al.  Cyclopentadienyl and pentamethylcyclopentadienyl ruthenium complexes as catalysts for the total deoxygenation of 1,2-hexanediol and glycerol , 2011 .

[31]  Yunjie Ding,et al.  Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media , 2010 .

[32]  M. Piccinini,et al.  THE CONTROL OF SELECTIVITY IN GAS-PHASE GLYCEROL DEHYDRATION TO ACROLEIN CATALYSED BY SULFATED ZIRCONIA , 2010 .

[33]  Mina Song,et al.  Aqueous-phase deoxygenation of glycerol to 1,3-propanediol over Pt/WO3/ZrO2 catalysts in a fixed-bed reactor , 2010 .

[34]  K. Tomishige,et al.  Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst , 2010 .

[35]  A. Morawski,et al.  Photocatalytic Activity of - Composites , 2009 .

[36]  A. Melezhyk,et al.  Study of Surface-Bulk Distribution of Tungsten in WO3/ZrO2 Oxides Prepared by Different Methods , 2009 .

[37]  Y. Sasaki,et al.  Production of 1,3-propanediol by hydrogenolysis of glycerol catalyzed by Pt/WO3/ZrO2 , 2008 .

[38]  D. Ferri,et al.  Flame-made WO3/TiO2 nanoparticles: Relation between surface acidity, structure and photocatalytic activity , 2008 .

[39]  I. Kozhevnikov,et al.  Hydrogenolysis of Glycerol to Propanediol Over Ru: Polyoxometalate Bifunctional Catalyst , 2008 .

[40]  M. Pagliaro,et al.  From glycerol to value-added products. , 2007, Angewandte Chemie.

[41]  Taejin Kim,et al.  Molecular/electronic structure–surface acidity relationships of model-supported tungsten oxide catalysts , 2007 .

[42]  Tomohisa Miyazawa,et al.  Glycerol conversion in the aqueous solution under hydrogen over Ru/C + an ion-exchange resin and its reaction mechanism , 2006 .

[43]  O. Oranska,et al.  Study of the Acid Site Structure on the WO3/ZrO2 Surface , 2005 .

[44]  Julien Chaminand,et al.  Glycerol hydrogenolysis on heterogeneous catalysts , 2004 .

[45]  Weiguo Song,et al.  NMR study of tungstated zirconia catalyst: characterizing the surface of tungstated zirconia and the influence of reduction treatment , 2002 .

[46]  David G. Barton,et al.  Structural and Catalytic Characterization of Solid Acids Based on Zirconia Modified by Tungsten Oxide , 1999 .

[47]  G. Larsen,et al.  A comparative study of n-pentane and n-butane isomerization over zirconia-supported tungsten oxide : Pulse and flow studies and DRIFTS catalyst characterization , 1998 .

[48]  L. Kustov New trends in IR-spectroscopic characterization of acid and basic sites in zeolites and oxide catalysts , 1997 .

[49]  G. M. Zhidomirov,et al.  On the unusual mechanism of Lewis acidity manifestation in HZSM-5 zeolites , 1990 .

[50]  M. T. Pope,et al.  Heteropoly and Isopoly Oxometalates , 1983 .

[51]  J. L. Franklin,et al.  Mass spectrometric determination of the proton affinities of various molecules , 1969 .

[52]  C. Angell,et al.  Infrared spectroscopic investigation of zeolites and adsorbed molecules. IV. Acetonitrile , 1969 .

[53]  K. Purcell,et al.  Studies of the Bonding in Acetonitrile Adducts1 , 1966 .