Experimentally identifying the entanglement class of pure tripartite states

We use concurrence as an entanglement measure and experimentally demonstrate the entanglement classification of arbitrary three-qubit pure states on a nuclear magnetic resonance quantum information processor. Computing the concurrence experimentally under three different bipartitions, for an arbitrary three-qubit pure state, reveals the entanglement class of the state. The experiment involves measuring the expectation values of Pauli operators. This was achieved by mapping the desired expectation values onto the local z magnetization of a single qubit. We tested the entanglement classification protocol on twenty-seven different generic states and successfully detected their entanglement class. Full quantum state tomography was performed to construct experimental tomographs of each state and negativity was calculated from them, to validate the experimental results.

[1]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[2]  T. Moroder,et al.  Taming multiparticle entanglement. , 2010, Physical review letters.

[3]  E. Togan,et al.  Observation of entanglement between a quantum dot spin and a single photon , 2012, Nature.

[4]  N. Gisin,et al.  Experimental methods for detecting entanglement. , 2005, Physical review letters.

[5]  Garett M. Leskowitz,et al.  State interrogation in nuclear magnetic resonance quantum-information processing , 2004 .

[6]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[7]  Dafa Li,et al.  The n-tangle of odd n qubits , 2009, Quantum Inf. Process..

[8]  Zhi-Xi Wang,et al.  Experimental detection of quantum entanglement , 2013 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[11]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[12]  Kavita Dorai,et al.  Experimental construction of a W superposition state and its equivalence to the Greenberger-Horne-Zeilinger state under local filtration , 2015 .

[13]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[14]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[15]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[16]  Simon Foster,et al.  Optics , 1981, Arch. Formal Proofs.

[17]  Yaakov S. Weinstein,et al.  Entanglement dynamics in three-qubit X states , 2010, 1004.3748.

[18]  Arvind,et al.  Constructing valid density matrices on an NMR quantum information processor via maximum likelihood estimation , 2016, 1604.04691.

[19]  W. Munro,et al.  Qudit quantum-state tomography , 2002 .

[20]  Kenneth R. Brown,et al.  Bounds on the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance , 2004, quant-ph/0409170.

[21]  Juan Miguel Arrazola,et al.  Accessible nonlinear entanglement witnesses , 2012 .

[22]  D. Bruß Characterizing Entanglement , 2001, quant-ph/0110078.

[23]  S. Walborn,et al.  Experimental determination of entanglement with a single measurement , 2006, Nature.

[24]  Monica Salerno,et al.  Orexin System: The Key for a Healthy Life , 2017, Front. Physiol..

[25]  S. Fei,et al.  Detection and measure of genuine tripartite entanglement with partial transposition and realignment of density matrices , 2017, Scientific Reports.

[26]  Y. Akbari-Kourbolagh,et al.  Entanglement criterion for four-partite systems based on local sum uncertainty relations , 2018, The European Physical Journal Plus.

[27]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[28]  Y. Akbari-Kourbolagh Entanglement criteria for the three-qubit states , 2017 .

[29]  A. Peres,et al.  Quantum code words contradict local realism , 1996, quant-ph/9611011.

[30]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[31]  Roberto S. Sarthour,et al.  Experimental implementation of a NMR entanglement witness , 2012, Quantum Inf. Process..

[32]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[33]  Soojoon Lee,et al.  Concurrence of assistance and Mermin inequality on three-qubit pure states , 2009, 0909.5316.

[34]  Front , 2020, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[35]  Kavita Dorai,et al.  Experimental construction of generic three-qubit states and their reconstruction from two-party reduced states on an NMR quantum information processor , 2014, 1407.3448.

[36]  W. Dur,et al.  Multiparticle entanglement and its experimental detection , 2000 .

[37]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[38]  J. S. Pedernales,et al.  Entanglement Measures in Embedding Quantum Simulators with Nuclear Spins , 2017, 1706.00252.

[39]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[40]  Christian Kurtsiefer,et al.  Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.

[41]  M. Weides,et al.  Generation of three-qubit entangled states using superconducting phase qubits , 2010, Nature.

[42]  D. Suter,et al.  Ground-state entanglement in a system with many-body interactions , 2010 .

[43]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[44]  N. Christensen,et al.  Potential multiparticle entanglement measure , 2000, quant-ph/0010052.

[45]  M. Lewenstein,et al.  Classification of mixed three-qubit states. , 2001, Physical review letters.

[46]  P. Agrawal,et al.  Distinguishing different classes of entanglement of three-qubit pure states , 2017, The European Physical Journal D.

[47]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[48]  D. Bruss,et al.  Experimental generation of pseudo-bound-entanglement , 2009, 0909.2743.

[50]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[51]  S. Fei,et al.  Identification of three-qubit entanglement , 2013, 1301.4317.

[52]  M. Ježek,et al.  Iterative algorithm for reconstruction of entangled states , 2000, quant-ph/0009093.

[53]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[54]  O. Gühne,et al.  Experimental detection of entanglement via witness operators and local measurements , 2002, quant-ph/0210134.

[55]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[56]  S. Brierley,et al.  Entanglement detection via mutually unbiased bases , 2012, 1202.5058.

[57]  Jair C. C. Freitas,et al.  NMR Quantum Information Processing , 2007 .

[58]  Arvind,et al.  Experimental classification of entanglement in arbitrary three-qubit pure states on an NMR quantum information processor , 2018, Physical Review A.

[59]  Timothy F. Havel,et al.  Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing , 1997, quant-ph/9709001.