Model Checks Using Residual Marked Empirical Processes

This paper proposes omnibus and directional tests for testing the goodness-of-fit of a parametric regression time series model. We use a general class of residual marked empirical processes as the building-blocks for estimation and testing of such models. First, we establish a weak convergence theorem under mild assumptions, which allows us to study in a unified way the asymptotic null distribution of the test statistics and their asymptotic behavior against Pitman's local alternatives. To approximate the asymptotic null distribution of test statistics we justify theoretically a bootstrap procedure. Also, some asymptotic theory for the estimation of the principal components of the residual marked processes is considered. This asymptotic theory is used to derive optimal directional tests and efficient estimation of regression parameters. Finally, a Monte Carlo study shows that the bootstrap and the asymptotic results provide good approximations for small sample sizes and an empirical application to the Canadian lynx data set is considered.

[1]  J. Partington,et al.  Introduction to functional analysis , 1959 .

[2]  G. Neuhaus Asymptotic power properties of the Cramér-von Mises test under contiguous alternatives , 1976 .

[3]  Yanqin Fan GOODNESS-OF-FIT TESTS BASED ON KERNEL DENSITY ESTIMATORS WITH FIXED SMOOTHING PARAMETERS , 1998, Econometric Theory.

[4]  P. Billingsley,et al.  The Lindeberg-Lévy theorem for martingales , 1961 .

[5]  Joel L. Horowitz,et al.  Testing a Parametric Model Against a Semiparametric Alternative , 1994, Econometric Theory.

[6]  A DATA-DRIVEN NONPARAMETRIC SPECIFICATION TEST FOR DYNAMIC REGRESSION MODELS , 2006, Econometric Theory.

[7]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[8]  Herold Dehling,et al.  Empirical Process Techniques for Dependent Data , 2002 .

[9]  J. Zheng,et al.  A consistent test of functional form via nonparametric estimation techniques , 1996 .

[10]  Winfried Stute,et al.  Nonparametric model checks for regression , 1997 .

[11]  Qi Li,et al.  Consistent Specification Tests for Semiparametric / Nonparametric Models Based on Series Estimation Methods ∗ , 2003 .

[12]  Ignacio N. Lobato,et al.  A Consistent Test for the Martingale Difference Hypothesis , 2001 .

[13]  J. Carlos Escanciano,et al.  Generalized spectral tests for the martingale difference hypothesis , 2006 .

[14]  E. Mammen Bootstrap and Wild Bootstrap for High Dimensional Linear Models , 1993 .

[15]  Carlos Escanciano GOODNESS-OF-FIT TESTS FOR LINEAR AND NON-LINEAR TIME SERIES MODELS , 2005 .

[16]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[17]  H. Bierens Model specification testing of time series regressions , 1984 .

[18]  Suojin Wang,et al.  A simple consistent bootstrap test for a parametric regression function , 1998 .

[19]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .

[20]  J. Escanciano A CONSISTENT DIAGNOSTIC TEST FOR REGRESSION MODELS USING PROJECTIONS , 2006, Econometric Theory.

[21]  Myron N. Chang Weak Convergence of a Self-Consistent Estimator of the Survival Function with Doubly Censored Data , 1990 .

[22]  R. L. Eubank,et al.  Testing Goodness-of-Fit in Regression Via Order Selection Criteria , 1992 .

[23]  J. Carlos Escanciano,et al.  Goodness-of-Fit Tests for Linear and Nonlinear Time Series Models , 2006 .

[24]  Wolfgang Karl Härdle,et al.  An empirical likelihood goodness‐of‐fit test for time series , 2003 .

[25]  Hira L. Koul,et al.  Nonparametric model checks for time series , 1999 .

[26]  H. Bierens Consistent model specification tests , 1982 .

[27]  Rate-optimal data-driven specification testing in regression models , 2001 .

[28]  Changbao Wu,et al.  Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .

[29]  P. Hansen Numerical tools for analysis and solution of Fredholm integral equations of the first kind , 1992 .

[30]  Yongmiao Hong,et al.  Generalized Spectral Tests for Conditional Mean Models in Time Series with Conditional Heteroscedasticity of Unknown Form , 2005 .

[31]  J. Florens,et al.  GENERALIZATION OF GMM TO A CONTINUUM OF MOMENT CONDITIONS , 2000, Econometric Theory.

[32]  Michael H. Neumann,et al.  Regression-type inference in nonparametric autoregression , 1998 .

[33]  Winfried Stute,et al.  Bootstrap Approximations in Model Checks for Regression , 1998 .

[34]  Joel L. Horowitz,et al.  An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model Against a Nonparametric Alternative , 2001 .

[35]  Yuichi Kitamura,et al.  Testing conditional moment restrictions , 2003 .

[36]  Jeffrey D. Hart,et al.  Nonparametric Smoothing and Lack-Of-Fit Tests , 1997 .

[37]  Li-Xing Zhu,et al.  MODEL CHECKING OF DIMENSION-REDUCTION TYPE FOR REGRESSION , 2003 .

[38]  Lixing Zhu,et al.  Model checks for regression: an innovation process approach , 1998 .

[39]  Angus E. Taylor Introduction to functional analysis , 1959 .

[40]  Yongmiao Hong,et al.  Consistent Specification Testing via Nonparametric Series Regression , 1995 .

[41]  M. Ossiander,et al.  A Central Limit Theorem Under Metric Entropy with $L_2$ Bracketing , 1987 .

[42]  Helmut Strasser,et al.  On the asymptotic power of the two-sided Kolmogorov-Smirnov test , 1990 .

[43]  J. Wolfowitz Generalization of the Theorem of Glivenko-Cantelli , 1954 .

[44]  H. Koul,et al.  Minimum distance regression model checking , 2004 .

[45]  R. Jennrich Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .

[46]  T. W. Anderson The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities , 1955 .

[47]  H. Koul Weighted Empirical Processes in Dynamic Nonlinear Models , 2002 .

[48]  Regina Y. Liu Bootstrap Procedures under some Non-I.I.D. Models , 1988 .

[49]  Herman J. Bierens,et al.  Asymptotic Theory of Integrated Conditional Moment Tests , 1997 .

[50]  Maxwell B. Stinchcombe,et al.  CONSISTENT SPECIFICATION TESTING WITH NUISANCE PARAMETERS PRESENT ONLY UNDER THE ALTERNATIVE , 1998, Econometric Theory.

[51]  Qi Li Consistent model speci " cation tests for time series econometric models , 1999 .

[52]  Robert M. de Jong,et al.  THE BIERENS TEST UNDER DATA DEPENDENCE , 1996 .

[53]  Clifford H. Spiegelman,et al.  Testing the Goodness of Fit of a Linear Model via Nonparametric Regression Techniques , 1990 .

[54]  Yoichi Nishiyama Weak convergence of some classes of martingales with jumps , 2000 .

[55]  Qi Li,et al.  CONSISTENT MODEL SPECIFICATION TESTS , 2000, Econometric Theory.

[56]  Jeffrey M. Wooldridge,et al.  A Test for Functional Form Against Nonparametric Alternatives , 1992, Econometric Theory.

[57]  E. Giné,et al.  Bootstrapping General Empirical Measures , 1990 .

[58]  S. Levental A uniform CLT for uniformly bounded families of martingale differences , 1989 .

[59]  Adonis Yatchew,et al.  Nonparametric Regression Tests Based on Least Squares , 1992, Econometric Theory.

[60]  S. Levental,et al.  Uniform CLT for Markov chains and its invariance principle: A martingale approach , 1995 .

[61]  Yanqin Fan,et al.  Consistent model specification tests : Omitted variables and semiparametric functional forms , 1996 .

[62]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[63]  D. Freedman On Tail Probabilities for Martingales , 1975 .

[64]  E. Mammen,et al.  Bootstrap of kernel smoothing in nonlinear time series , 2002 .

[65]  Herman J. Bierens,et al.  A consistent conditional moment test of functional form , 1990 .

[66]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[67]  Z. Q. John Lu,et al.  Nonlinear Time Series: Nonparametric and Parametric Methods , 2004, Technometrics.

[68]  Kai Wang Ng,et al.  Checking the adequacy of a partial linear model , 2003 .

[69]  Lixing Zhu,et al.  Model Checks for Generalized Linear Models , 2002 .

[70]  Jianqing Fan,et al.  Goodness-of-Fit Tests for Parametric Regression Models , 2001 .

[71]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[72]  R. Kress Linear Integral Equations , 1989 .

[73]  U. Grenander Stochastic processes and statistical inference , 1950 .

[74]  P. Moran The Statistical Analsis of the Canadian Lynx cycle. 1. Structure and Prediction. , 1953 .

[75]  Hira L. Koul,et al.  Martingale transforms goodness-of-fit tests in regression models , 2004 .