Inference Based on Type-II Hybrid Censored Data From a Weibull Distribution

A hybrid censoring scheme is a mixture of type-I and type-II censoring schemes. This article presents the statistical inferences on Weibull parameters when the data are type-II hybrid censored. The maximum likelihood estimators, and the approximate maximum likelihood estimators are developed for estimating the unknown parameters. Asymptotic distributions of the maximum likelihood estimators are used to construct approximate confidence intervals. Bayes estimates, and the corresponding highest posterior density credible intervals of the unknown parameters, are obtained using suitable priors on the unknown parameters, and by using Markov chain Monte Carlo techniques. The method of obtaining the optimum censoring scheme based on the maximum information measure is also developed. We perform Monte Carlo simulations to compare the performances of the different methods, and we analyse one data set for illustrative purposes.

[1]  G. K. Bhattacharyya,et al.  Exact confidence bounds for an exponential parameter under hybrid censoring , 1987 .

[2]  B. Epstein Truncated Life Tests in the Exponential Case , 1954 .

[3]  James O. Berger,et al.  Bayesian Analysis for the Poly-Weibull Distribution , 1993 .

[4]  Debasis Kundu,et al.  On the comparison of Fisher information of the Weibull and GE distributions , 2006 .

[5]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[6]  Luc Devroye,et al.  A simple algorithm for generating random variates with a log-concave density , 1984, Computing.

[7]  Debasis Kundu,et al.  Estimation of for Weibull Distributions , 2006 .

[8]  Nader Ebrahimi Estimating the parameters of an exponential distribution from a hybrid life test , 1986 .

[9]  B. Arnold,et al.  A first course in order statistics , 2008 .

[10]  S. James Press,et al.  The Subjectivity of Scientists and the Bayesian Approach: Press/The Subjectivity , 2001 .

[11]  Bong-Jin Yum,et al.  Development of r,T hybrid sampling plans for exponential lifetime distributions , 1996 .

[12]  N. Balakrishnan,et al.  Reliability sampling plans for lognormal distribution, based on progressively-censored samples , 2000, IEEE Trans. Reliab..

[13]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[14]  Debasis Kundu,et al.  Hybrid censoring schemes with exponential failure distribution , 1998 .

[15]  N. Balakrishnan,et al.  Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution , 2003 .

[16]  Debasis Kundu,et al.  Estimation of P[Y, 2006, IEEE Transactions on Reliability.

[17]  W. Meeker,et al.  Bayesian life test planning for the Weibull distribution with given shape parameter , 2005 .

[18]  Nader Ebrahimi Prediction intervals for future failures in the exponential distribution under hybrid censoring , 1992 .

[19]  Debasis Kundu,et al.  On hybrid censored Weibull distribution , 2007 .

[20]  D. Lindley,et al.  Approximate Bayesian methods , 1980 .

[21]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[22]  Mark P. Kaminskiy,et al.  A simple procedure for Bayesian estimation of the Weibull distribution , 2005, IEEE Transactions on Reliability.

[23]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[24]  E. Turiel The Development of Morality , 2007 .

[25]  Irwin Guttman,et al.  Bayesian analysis of hybrid life tests with exponential failure times , 1987 .

[26]  Marvin H. J. Gruber The Subjectivity of Scientists and the Bayesian Approach , 2002, Technometrics.

[27]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[28]  R. Dykstra,et al.  A Confidence Interval for an Exponential Parameter from a Hybrid Life Test , 1982 .

[29]  B. Arnold,et al.  A first course in order statistics , 1994 .