Vibrational Optical Activity of BODIPY Dimers: The Role of Magnetic-Electric Coupling in Vibrational Excitons.

The vibrational exciton (VE) interpretation of intense bisignated couplets in vibrational circular dichroism (VCD) spectra of a pair of atropisomeric BODIPY (boron dipyrrin) dimers is discussed. The role of intrinsic magnetic moments is crucial to reproduce the different behaviors of quasi-isomeric BODIPY dimers with different aryl junction.

[1]  Ciro A Guido,et al.  Circularly Polarized Luminescence from Axially Chiral BODIPY DYEmers: An Experimental and Computational Study. , 2016, Chemistry.

[2]  K. Monde,et al.  Studying the stereostructures of biomolecules and their analogs by vibrational circular dichroism , 2016 .

[3]  V. P. Nicu Revisiting an old concept: the coupled oscillator model for VCD. Part 1: the generalised coupled oscillator mechanism and its intrinsic connection to the strength of VCD signals. , 2016, Physical chemistry chemical physics : PCCP.

[4]  V. P. Nicu Revisiting an old concept: the coupled oscillator model for VCD. Part 2: implications of the generalised coupled oscillator mechanism for the VCD robustness concept. , 2016, Physical chemistry chemical physics : PCCP.

[5]  G. Pescitelli,et al.  Cryptochirality in 2,2′‐Coupled BODIPY DYEmers , 2016 .

[6]  M. Tommasini,et al.  Corrigendum to “The connection between robustness angles and dissymmetry factors in vibrational circular dichroism spectra” [Chem. Phys. Lett. 639 (2015) 320–325] , 2016 .

[7]  Fouad S. Husseini,et al.  Simulation of Two-Dimensional Infrared Spectroscopy of Peptides Using Localized Normal Modes. , 2016, Journal of chemical theory and computation.

[8]  G. Mazzeo,et al.  pH Dependent Chiroptical Properties of (1R,2R)- and (1S,2S)-trans-Cyclohexane Diesters and Diamides from VCD, ECD, and CPL Spectroscopy. , 2016, The journal of physical chemistry. B.

[9]  A. Crispini,et al.  Vibrational circular dichroism and chiroptical properties of chiral Ir(iii) luminescent complexes. , 2016, Dalton transactions.

[10]  M. Tommasini,et al.  The connection between robustness angles and dissymmetry factors in vibrational circular dichroism spectra , 2015 .

[11]  P. Polavarapu,et al.  Determination of the Absolute Configurations Using Exciton Chirality Method for Vibrational Circular Dichroism: Right Answers for the Wrong Reasons? , 2015, The journal of physical chemistry. A.

[12]  Benedetta Mennucci,et al.  The role of magnetic-electric coupling in exciton-coupled ECD spectra: the case of bis-phenanthrenes. , 2015, Chemical communications.

[13]  G. Mazzeo,et al.  Bicamphor: a prototypic molecular system to investigate vibrational excitons. , 2015, The journal of physical chemistry. A.

[14]  G. Bringmann,et al.  Axially chiral BODIPY DYEmers: an apparent exception to the exciton chirality rule. , 2014, Angewandte Chemie.

[15]  J. Kadokawa,et al.  In Depth Study on Solution-State Structure of Poly(lactic acid) by Vibrational Circular Dichroism , 2014 .

[16]  Koji Nakanishi,et al.  Electronic CD Exciton Chirality Method: Principles and Applications , 2012 .

[17]  K. Monde,et al.  Exciton chirality method in vibrational circular dichroism. , 2012, Journal of the American Chemical Society.

[18]  A. Bard,et al.  Chemical and electrochemical dimerization of BODIPY compounds: electrogenerated chemiluminescent detection of dimer formation. , 2011, Journal of the American Chemical Society.

[19]  T. Measey,et al.  Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils. , 2011, Journal of the American Chemical Society.

[20]  E. Baerends,et al.  Robust normal modes in vibrational circular dichroism spectra. , 2009, Physical chemistry chemical physics : PCCP.

[21]  F. Castiglione,et al.  Spectroscopic and structural investigation of the confinement of D and L dimethyl tartrate in lecithin reverse micelles. , 2009, The journal of physical chemistry. B.

[22]  Anthony Harriman,et al.  The chemistry of fluorescent bodipy dyes: versatility unsurpassed. , 2008, Angewandte Chemie.

[23]  Kevin Burgess,et al.  BODIPY dyes and their derivatives: syntheses and spectroscopic properties. , 2007, Chemical reviews.

[24]  G. Stock,et al.  Ab initio-based exciton model of amide I vibrations in peptides: definition, conformational dependence, and transferability. , 2005, The Journal of chemical physics.

[25]  T. Buffeteau,et al.  Density Functional Theory Calculations of Vibrational Absorption and Circular Dichroism Spectra of Dimethyl-L-tartrate , 2004 .

[26]  P. Bouř,et al.  Vibrational Circular Dichroism of 1,1‘-Binaphthyl Derivatives: Experimental and Theoretical Study , 2001 .

[27]  P. Bouř,et al.  Computational evaluation of the coupled oscillator model in the vibrational circular dichroism of selected small molecules , 1992 .

[28]  C. S. Ewig,et al.  Conformations of tartaric acid and its esters , 1987 .

[29]  T. Keiderling,et al.  Coupled oscillator interpretation of the vibrational circular dichroism of several dicarbonyl-containing steroids , 1983 .

[30]  T. Keiderling,et al.  Conformation of dimethyl tartrate in solution. Vibrational circular dichroism results , 1980 .

[31]  T. R. Faulkner,et al.  Infrared circular dichroism associated with the hydroxyl-stretching vibration in the methyl ester of mandelic acid , 1978 .

[32]  P. Stephens,et al.  Vibrational circular dichroism of dimethyl tartrate. A coupled oscillator , 1977 .

[33]  I. Chabay,et al.  Optical Activity of Vibrational Transitions: A Coupled Oscillator Model , 1972 .

[34]  K. Nakanishi,et al.  Exciton chirality method and its application to configurational and conformational studies of natural products , 1972 .

[35]  I. Chabay,et al.  Infrared circular dichroism measurement between 2000 and 5000 cm−1: Pr3+-tartrate complexes , 1972 .