A Polynomial Time Constraint-Reduced Algorithm for Semidefinite Optimization Problems

We present an infeasible primal-dual interior point method for semidefinite optimization problems, making use of constraint reduction. We show that the algorithm is globally convergent and has polynomial complexity, the first such complexity result for primal-dual constraint reduction algorithms for any class of problems. Our algorithm is a modification of one with no constraint reduction due to Potra and Sheng (1998) and can be applied whenever the data matrices are block diagonal. It thus solves as special cases any optimization problem that is a linear, convex quadratic, convex quadratically constrained, or second-order cone problem.

[1]  G. Dantzig,et al.  A Build-Up Interior Method for Linear Programming: Affine Scaling Form , 1990 .

[2]  Dianne P. O'Leary,et al.  Adaptive constraint reduction for training support vector machines. , 2008 .

[3]  Alexander Schrijver,et al.  A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.

[4]  Benjamin Jansen Interior point techniques in optimization - complementarity, sensitivity and algorithms , 1997, Applied optimization.

[5]  Dianne P. O'Leary,et al.  A constraint-reduced variant of Mehrotra’s predictor-corrector algorithm , 2012, Comput. Optim. Appl..

[6]  Florian A. Potra,et al.  A Superlinearly Convergent Primal-Dual Infeasible-Interior-Point Algorithm for Semidefinite Programming , 1998, SIAM J. Optim..

[7]  Masakazu Kojima,et al.  Local convergence of predictor—corrector infeasible-interior-point algorithms for SDPs and SDLCPs , 1998, Math. Program..

[8]  D. O’Leary Estimating Matrix Condition Numbers , 1980 .

[9]  Kaoru Tone,et al.  An active-set strategy in an interior point method for linear programming , 1991, Math. Program..

[10]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[11]  F. Potra,et al.  Superlinear Convergence of Interior-Point Algorithms for Semidefinite Programming , 1998 .

[12]  Dianne P. O'Leary,et al.  Adaptive constraint reduction for convex quadratic programming , 2012, Comput. Optim. Appl..

[13]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[14]  M. Overton,et al.  A New Primal-Dual Interior-Point Method for Semidefinite Programming , 1994 .

[15]  C. Bachoc,et al.  New upper bounds for kissing numbers from semidefinite programming , 2006, math/0608426.

[16]  Masakazu Kojima,et al.  Exploiting sparsity in primal-dual interior-point methods for semidefinite programming , 1997, Math. Program..

[17]  Masakazu Kojima,et al.  A Predictor-corrector Interior-point Algorithm for the Semidenite Linear Complementarity Problem Using the Alizadeh-haeberly-overton Search Direction , 1996 .

[18]  Nicholas J. Highham A survey of condition number estimation for triangular matrices , 1987 .

[19]  Gene H. Golub,et al.  Methods for modifying matrix factorizations , 1972, Milestones in Matrix Computation.

[20]  Kim-Chuan Toh,et al.  On the Implementation and Usage of SDPT3 – A Matlab Software Package for Semidefinite-Quadratic-Linear Programming, Version 4.0 , 2012 .

[21]  Jun Ji,et al.  On the Local Convergence of a Predictor-Corrector Method for Semidefinite Programming , 1999, SIAM J. Optim..

[22]  Yinyu Ye,et al.  A Short-Cut Potential Reduction Algorithm for Linear Programming , 1993 .

[23]  E. D. Klerk,et al.  Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .

[24]  Pierre-Antoine Absil,et al.  Constraint Reduction for Linear Programs with Many Inequality Constraints , 2006, SIAM J. Optim..

[25]  Etienne de Klerk,et al.  On Semidefinite Programming Relaxations of the Traveling Salesman Problem , 2007, SIAM J. Optim..

[26]  Jhacova Ashira Williams The Use of Preconditioning for Training Support Vector Machines , 2008 .

[27]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[28]  Jack Dongarra,et al.  LINPACK Users' Guide , 1987 .

[29]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[30]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[31]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[32]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[33]  Yinyu Ye,et al.  A Build-up Interior-point Method for Linear Programming: Aane Scaling Form , 1991 .

[34]  Yin Zhang,et al.  A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming , 1998, Math. Program..

[35]  Benjamin Jansen,et al.  Interior Point Techniques in Optimization , 1997 .

[36]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[37]  F. Potra,et al.  Superlinear Convergence of a Predictor-corrector Method for Semideenite Programming without Shrinking Central Path Neighborhood , 1996 .

[38]  M. Overton,et al.  Primal - dual interior - point methods for semidefinite programming : Stability, convergence, and nu , 1998 .

[39]  G. Stewart The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .

[40]  Franz Rendl,et al.  Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..

[41]  Renato D. C. Monteiro,et al.  Polynomial Convergence of Primal-Dual Algorithms for Semidefinite Programming Based on the Monteiro and Zhang Family of Directions , 1998, SIAM J. Optim..

[42]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[44]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[45]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[46]  Tamás Terlaky,et al.  Adding and Deleting Constraints in the Logarithmic Barrier Method for LP , 1994 .