A Polynomial Time Constraint-Reduced Algorithm for Semidefinite Optimization Problems
暂无分享,去创建一个
[1] G. Dantzig,et al. A Build-Up Interior Method for Linear Programming: Affine Scaling Form , 1990 .
[2] Dianne P. O'Leary,et al. Adaptive constraint reduction for training support vector machines. , 2008 .
[3] Alexander Schrijver,et al. A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.
[4] Benjamin Jansen. Interior point techniques in optimization - complementarity, sensitivity and algorithms , 1997, Applied optimization.
[5] Dianne P. O'Leary,et al. A constraint-reduced variant of Mehrotra’s predictor-corrector algorithm , 2012, Comput. Optim. Appl..
[6] Florian A. Potra,et al. A Superlinearly Convergent Primal-Dual Infeasible-Interior-Point Algorithm for Semidefinite Programming , 1998, SIAM J. Optim..
[7] Masakazu Kojima,et al. Local convergence of predictor—corrector infeasible-interior-point algorithms for SDPs and SDLCPs , 1998, Math. Program..
[8] D. O’Leary. Estimating Matrix Condition Numbers , 1980 .
[9] Kaoru Tone,et al. An active-set strategy in an interior point method for linear programming , 1991, Math. Program..
[10] Michael J. Todd,et al. Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..
[11] F. Potra,et al. Superlinear Convergence of Interior-Point Algorithms for Semidefinite Programming , 1998 .
[12] Dianne P. O'Leary,et al. Adaptive constraint reduction for convex quadratic programming , 2012, Comput. Optim. Appl..
[13] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[14] M. Overton,et al. A New Primal-Dual Interior-Point Method for Semidefinite Programming , 1994 .
[15] C. Bachoc,et al. New upper bounds for kissing numbers from semidefinite programming , 2006, math/0608426.
[16] Masakazu Kojima,et al. Exploiting sparsity in primal-dual interior-point methods for semidefinite programming , 1997, Math. Program..
[17] Masakazu Kojima,et al. A Predictor-corrector Interior-point Algorithm for the Semidenite Linear Complementarity Problem Using the Alizadeh-haeberly-overton Search Direction , 1996 .
[18] Nicholas J. Highham. A survey of condition number estimation for triangular matrices , 1987 .
[19] Gene H. Golub,et al. Methods for modifying matrix factorizations , 1972, Milestones in Matrix Computation.
[20] Kim-Chuan Toh,et al. On the Implementation and Usage of SDPT3 – A Matlab Software Package for Semidefinite-Quadratic-Linear Programming, Version 4.0 , 2012 .
[21] Jun Ji,et al. On the Local Convergence of a Predictor-Corrector Method for Semidefinite Programming , 1999, SIAM J. Optim..
[22] Yinyu Ye,et al. A Short-Cut Potential Reduction Algorithm for Linear Programming , 1993 .
[23] E. D. Klerk,et al. Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .
[24] Pierre-Antoine Absil,et al. Constraint Reduction for Linear Programs with Many Inequality Constraints , 2006, SIAM J. Optim..
[25] Etienne de Klerk,et al. On Semidefinite Programming Relaxations of the Traveling Salesman Problem , 2007, SIAM J. Optim..
[26] Jhacova Ashira Williams. The Use of Preconditioning for Training Support Vector Machines , 2008 .
[27] Renato D. C. Monteiro,et al. Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..
[28] Jack Dongarra,et al. LINPACK Users' Guide , 1987 .
[29] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[30] Michael J. Todd,et al. Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..
[31] Michael L. Overton,et al. Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..
[32] Yin Zhang,et al. On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..
[33] Yinyu Ye,et al. A Build-up Interior-point Method for Linear Programming: Aane Scaling Form , 1991 .
[34] Yin Zhang,et al. A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming , 1998, Math. Program..
[35] Benjamin Jansen,et al. Interior Point Techniques in Optimization , 1997 .
[36] Shinji Hara,et al. Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..
[37] F. Potra,et al. Superlinear Convergence of a Predictor-corrector Method for Semideenite Programming without Shrinking Central Path Neighborhood , 1996 .
[38] M. Overton,et al. Primal - dual interior - point methods for semidefinite programming : Stability, convergence, and nu , 1998 .
[39] G. Stewart. The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .
[40] Franz Rendl,et al. Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..
[41] Renato D. C. Monteiro,et al. Polynomial Convergence of Primal-Dual Algorithms for Semidefinite Programming Based on the Monteiro and Zhang Family of Directions , 1998, SIAM J. Optim..
[42] J. Lasserre,et al. Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .
[44] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[45] Robert J. Vanderbei,et al. An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..
[46] Tamás Terlaky,et al. Adding and Deleting Constraints in the Logarithmic Barrier Method for LP , 1994 .