Environment-Friendly Synthesis of Indoline Derivates Using Flow Chemistry Techniques

Flow chemistry proved to be a valuable technique to improve the discovery chemistry route to melanin-concentrating hormone receptor 1 (MCHr1) antagonists with 1H,2H,3H,4H,5H-[1,4]diazepino[1,7-a]indole scaffold. Novel, one-step heterogeneous catalytic hydrogenation for the synthesis of ethyl 2-(2,3-dihydro-1H-indol-2-yl) acetate was developed from ethyl 4-(2-nitrophenyl)-3-oxobutanoate to avoid commonly used reducing chemicals. The N-alkylation reaction of the indoline nitrogen was also optimised using a purpose-built flow reactor and design of experiments. Applying the optimal set of parameters allowed us to decrease almost ten-fold the excess of carcinogenic 1,2-dibromoethane. Additionally, nearly complete conversion was achieved in a fraction of the original reaction time (30 min vs. 4 days); therefore, the productivity (space time yield) of the flow reactor system is proved to be ca. 200 times more than the batch process.

[1]  O. Silakari,et al.  Indoles as therapeutics of interest in medicinal chemistry: Bird's eye view. , 2017, European journal of medicinal chemistry.

[2]  P. Seeberger,et al.  The Hitchhiker's Guide to Flow Chemistry ∥. , 2017, Chemical reviews.

[3]  Jie Wu,et al.  Reaction screening in continuous flow reactors , 2016 .

[4]  Paul M. Murray,et al.  The application of design of experiments (DoE) reaction optimisation and solvent selection in the development of new synthetic chemistry. , 2016, Organic & biomolecular chemistry.

[5]  N. Anderson,et al.  Design of Experiments (DoE) and Process Optimization. A Review of Recent Publications , 2015 .

[6]  Tiansheng Wang,et al.  Application of design of experiments (DoE) optimization to the one-pot synthesis of 4,6-dihydropteridinones. , 2015, Organic & biomolecular chemistry.

[7]  G. Chessari,et al.  Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Discovery of a Non-Alanine Lead Series with Dual Activity Against cIAP1 and XIAP. , 2015, Journal of medicinal chemistry.

[8]  Adam McCluskey,et al.  The expanding utility of continuous flow hydrogenation. , 2015, Organic & biomolecular chemistry.

[9]  B. Gutmann,et al.  Kontinuierliche Durchflussverfahren: ein Werkzeug für die sichere Synthese von pharmazeutischen Wirkstoffen , 2015 .

[10]  David Cantillo,et al.  Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients. , 2015, Angewandte Chemie.

[11]  Cong-Hui Wang,et al.  Rhenium-catalyzed dehydrogenative olefination of C(sp(3))-H bonds with hypervalent iodine(III) reagents. , 2015, Organic & biomolecular chemistry.

[12]  Tsuyoshi Ishii,et al.  Discovery of a Novel Series of N-Phenylindoline-5-sulfonamide Derivatives as Potent, Selective, and Orally Bioavailable Acyl CoA:Monoacylglycerol Acyltransferase-2 Inhibitors. , 2015, Journal of medicinal chemistry.

[13]  Z. Zuo,et al.  Intramolecular dearomative oxidative coupling of indoles: a unified strategy for the total synthesis of indoline alkaloids. , 2015, Accounts of chemical research.

[14]  A. McCluskey,et al.  Expanding the utility of flow hydrogenation : a robust protocol restricting hydrodehalogenation , 2014 .

[15]  Klavs F Jensen,et al.  Tools for chemical synthesis in microsystems. , 2014, Lab on a chip.

[16]  Le Chang,et al.  Structure–Activity Relationship Studies of the Tricyclic Indoline Resistance-Modifying Agent , 2014, Journal of medicinal chemistry.

[17]  J. G. Taylor,et al.  FACILE SYNTHESIS OF INDOLINES BY A TANDEM NITRO-REDUCTION AZA MICHAEL ADDITION REACTION , 2013 .

[18]  M. Gobbi,et al.  6-methoxy-7-benzofuranoxy and 6-methoxy-7-indolyloxy analogues of 2-[2-(2,6-Dimethoxyphenoxy)ethyl]aminomethyl-1,4-benzodioxane (WB4101):1 discovery of a potent and selective α1D-adrenoceptor antagonist. , 2013, Journal of medicinal chemistry.

[19]  Ian R. Baxendale,et al.  The integration of flow reactors into synthetic organic chemistry , 2013 .

[20]  E. Busto,et al.  Stereoselective synthesis of 2,3-disubstituted indoline diastereoisomers by chemoenzymatic processes. , 2012, The Journal of organic chemistry.

[21]  Ian R Baxendale,et al.  Establishing a flow process to coumarin-8-carbaldehydes as important synthetic scaffolds. , 2012, Chemistry.

[22]  U. Holzgrabe,et al.  A New Synthetic Approach to Pentacyclic Ring, 6,7,14,15-Tetrahydro[1,5]diazocino[1,2-a:6,5-a’]-8-dihydrodiindole , 2011 .

[23]  Weihong Zhou,et al.  Heterogeneous catalytic hydrogenation of unprotected indoles in water: a green solution to a long-standing challenge. , 2011, Organic letters.

[24]  Liang‐Nian He,et al.  Polyethylene Glycol–Enhanced Chemoselective Synthesis of Organic Carbamates from Amines, CO2, and Alkyl Halides , 2011 .

[25]  C. Kappe,et al.  Heterogeneous catalytic hydrogenation reactions in continuous-flow reactors. , 2011, ChemSusChem.

[26]  Steven V. Ley,et al.  A breakthrough method for the accurate addition of reagents in multi-step segmented flow processing† , 2011 .

[27]  Dian-yu Liu,et al.  Diverse Strategies for the Synthesis of the Indoline Scaffold , 2010 .

[28]  B. Stoltz,et al.  Expedient synthesis of 3-hydroxyisoquinolines and 2-hydroxy-1,4-naphthoquinones via one-pot aryne acyl-alkylation/condensation. , 2009, Organic & biomolecular chemistry.

[29]  Hiromichi Yamashita,et al.  Novel synthesis of fused indoles and 2-substituted indoles by the palladium-catalyzed cyclization of N-cycloalkenyl-o-haloanilines , 2009 .

[30]  F. Totzke,et al.  Search for inhibitors of bacterial and human protein kinases among derivatives of diazepines[1,4] annelated with maleimide and indole cycles. , 2008, Journal of medicinal chemistry.

[31]  Y. Wong,et al.  Diastereodivergence and appendage diversity in the multicomponent synthesis of aryl-pyrrolo-tetrahydrocarbazoles , 2008 .

[32]  P. Witt-Enderby,et al.  Synthesis, NMR conformational analysis and pharmacological evaluation of 7,7a,13,14-tetrahydro-6H-cyclobuta[b]pyrimido[1,2-a:3,4-a']diindole analogues as melatonin receptor ligands. , 2007, Organic & biomolecular chemistry.

[33]  P. Witt-Enderby,et al.  Synthesis and pharmacological evaluation of 6a,7-dihydro-6H,13H-pyrazino[1,2-a;4,5-a′]diindole analogs as melatonin receptor ligands , 2007 .

[34]  M. Guerrero,et al.  Et3B-Mediated radical alkylation of pyrroles and indoles , 2006 .

[35]  B. Joseph,et al.  Synthesis of Substituted Azepino[3,4-b]indole-1,5-diones , 2004 .

[36]  L. D. Miranda,et al.  Efficient, intermolecular, oxidative radical alkylation of heteroaromatic systems under "tin-free" conditions. , 2003, Chemical communications.

[37]  R. Mccall,et al.  2,3,4,5-Tetrahydro- and 2,3,4,5,11,11a-hexahydro-1H-[1,4]diazepino[1,7-a]indoles: new templates for 5-HT2C agonists , 2003 .

[38]  W. Bornmann,et al.  Syntheses and biological evaluation of vinblastine congeners. , 2003, Organic & biomolecular chemistry.

[39]  M. Knowles,et al.  N-Arylsulfonylindole derivatives as serotonin 5-HT(6) receptor ligands. , 2001, Journal of medicinal chemistry.

[40]  K. Vollhardt,et al.  Approaches to the synthesis of (+/-)-strychnine via the cobalt-mediated [2 + 2 + 2] cycloaddition: rapid assembly of a classic framework. , 2001, Journal of the American Chemical Society.

[41]  E. Novellino,et al.  5-Alkyl-2-(alkylthio)-6-(2,6-dihalophenylmethyl)-3, 4-dihydropyrimidin-4(3H)-ones: novel potent and selective dihydro-alkoxy-benzyl-oxopyrimidine derivatives. , 1999, Journal of medicinal chemistry.

[42]  M. Ishar,et al.  Tandem reorganisation of 1,3-dipolar cycloadducts of C-(4-oxo-4H[1]benzopyran-3-yl)-N-phenylnitrone and allenic esters, leading to novel functionalized benzo[b]indolizines , 1999 .

[43]  T. L. Gilchrist,et al.  Benzocarbapenems from indoles1 , 1998 .

[44]  M. Martinelli,et al.  Synthetic Studies toward the Partial Ergot Alkaloid LY228729, a Potent 5HT1A Receptor Agonist , 1997 .

[45]  T. L. Gilchrist,et al.  BENZOCARBAPENEMS FROM ETHYL INDOLE-2-ACETATE , 1995 .

[46]  Bao-sheng Liu,et al.  Dirhodium tetraacetate catalyzed carbon-hydrogen insertion reaction in N-substituted .alpha.-carbomethoxy-.alpha.-diazoacetanilides and structural analogs. Substituent and conformational effects , 1992 .

[47]  C. Moody,et al.  Diels–Alder reactivity of pyrano[4,3-b]indol-3-ones, indole 2,3-quinodimethane analogues , 1990 .

[48]  F. Melani,et al.  Tricyclic heteroaromatic systems. 1,2,3,4-tetrahydropyrazolo[4,3-c][l]benzazepin-1-ones as potential antitumor agents , 1989 .

[49]  P. Knochel,et al.  Mixed copper, zinc 2-amino benzylic organometallics as efficient reagents for the synthesis of heterocycles , 1989 .

[50]  K. Murakami,et al.  Polymerisation of indole. Part 2. A new indole trimer , 1988 .

[51]  S. Blechert,et al.  Hetero-cope rearrangements - vI1 short and stereoselective syntheses of 2-vinylindoles by a tandem-process , 1987 .

[52]  Lilly Capuano,et al.  Neue Synthesen von 2-Acylbenzofuranen, 2-Acylindolen, 2-Indolycarbonsäureestern und 2-Chinolonen durch intramolekulare Wittig-Reaktion , 1986 .

[53]  Y. Yoshida,et al.  A DIRECT SYNTHESIS OF CARBAMATE ESTER PROM CARBON DIOXIDE, AMINE AND ALKYL HALIDE , 1984 .

[54]  P. Rosenmund,et al.  Beiträge zur Chemie des Indols, XI. Synthesen und Eigenschaften vor 2‐(2‐Indolyl)‐1,3‐dicarbonyl‐verbindungen, I (Entaromatisierungseffekte in der Indolreihe) , 1976 .

[55]  V. Snieckus,et al.  Selected Catalytic Decompositions of Indole-2-diazoketone , 1971 .

[56]  B. Robinson The reduction of indoles and related compounds. , 1969, Chemical reviews.

[57]  W. Schindler Indol-2-essigsäure , 1958 .