Convex bodies and norms associated to convex measures

Isotropy-like properties are considered for finite measures with heavy tails. As a basic tool, we extend K. Ball’s relationship between convex bodies and finite logarithmically concave measures to a larger class of distributions, satisfying convexity conditions of the Brunn–Minkowski type.

[1]  Lluís Santaló,et al.  Un Invariante afín para los cuerpos convexos del espacio de n dimensiones , 2009 .

[2]  Alexander Koldobsky,et al.  Fourier Analysis in Convex Geometry , 2005 .

[3]  R. Rado A Theorem on General Measure , 1946 .

[4]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[5]  Sergey G. Bobkov,et al.  On concentration of distributions of random weighted sums , 2003 .

[6]  B. Grünbaum Partitions of mass-distributions and of convex bodies by hyperplanes. , 1960 .

[7]  D. Hensley Slicing convex bodies—bounds for slice area in terms of the body’s covariance , 1980 .

[8]  S. Bobkov Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures , 1999 .

[9]  Matthieu Fradelizi,et al.  Some functional forms of Blaschke–Santaló inequality , 2006 .

[10]  V. Milman,et al.  The concept of duality for measure projections of convex bodies , 2008 .

[11]  P. McMullen GEOMETRIC TOMOGRAPHY (Encyclopedia of Mathematics and its Applications 58) , 1997 .

[12]  Andrew Caplin,et al.  Aggregation and Social Choice: A Mean Voter Theorem , 1991 .

[13]  B. J. Birch,et al.  On 3N points in a plane , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Apostolos Giannopoulos,et al.  Extremal problems and isotropic positions of convex bodies , 2000 .

[15]  J. Bourgain On the distribution of polynomials on high dimensional convex sets , 1991 .

[16]  R. Gardner Geometric Tomography: Parallel X-rays of planar convex bodies , 2006 .

[17]  Mordecai Avriel,et al.  r-convex functions , 1972, Math. Program..

[18]  S. Bobkov Large deviations and isoperimetry over convex probability measures with heavy tails , 2007 .

[19]  V. Milman,et al.  Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .

[20]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[21]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[22]  Jean Bourgain,et al.  ON HIGH DIMENSIONAL MAXIMAL FUNCTIONS ASSOCIATED TO CONVEX BODIES , 1986 .

[23]  M. Meyer,et al.  Characterization of affinely-rotation-invariant log-concave measures by section-centroid location , 1991 .

[24]  Olivier Guédon,et al.  Kahane-Khinchine type inequalities for negative exponent , 1999 .

[25]  M. Fradelizi Hyperplane Sections of Convex Bodies in Isotropic Position , 1999 .

[26]  Shiri Artstein-Avidan and Vitali Milman A characterization of the concept of duality , 2007 .

[27]  K. Ball Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .

[28]  S Dancs,et al.  On a class of integral inequalities and their measure-theoretic consequences , 1980 .

[29]  E. Gorin,et al.  Generalizations of Khinchin’s inequality , 1991 .

[30]  B. H. Neumann,et al.  On An Invariant of Plane Regions and Mass Distributions , 1945 .

[31]  K. Leichtweiss Zur Affinoberfläche konvexer Körper , 1986 .

[32]  Bo'az Klartag,et al.  The Santalo point of a function, and a functional form of the Santalo inequality , 2004 .

[33]  C. Borell Convex measures on locally convex spaces , 1974 .

[34]  Shiri Artstein-Avidan,et al.  The concept of duality in convex analysis, and the characterization of the Legendre transform , 2009 .

[35]  S. Gupta,et al.  Brunn-Minkowski inequality and its aftermath , 1980 .

[36]  C. Borell Convex set functions ind-space , 1975 .

[37]  M. Meyer,et al.  A geometric property of the boundary of symmetric convex bodies and convexity of flotation surfaces , 1991 .