For a set X with at least 3 elements, we establish a canonical one to one correspondence between all betweenness relations satisfying certain axioms and all pairs of inverse orderings “<” and “>” defined on X for which the corresponding Hasse diagram is connected and all maximal chains contain at least 3 elements. For an ordering “<”, the corresponding betweenness relation B is given by % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!$$B=\{(x,y,z)\in X^3\mid x<y<z {\rm \ or\ }z<y<x\}.$$ Moreover, by adding one more axiom, we obtain also a one to one correspondence between all pairs of dual lattices and all betweenness relations.
[1]
G. Grätzer.
General Lattice Theory
,
1978
.
[2]
R. Padmanabhan.
On some ternary relations in lattices
,
1966
.
[3]
M. F. Smiley,et al.
Applications of transitivities of betweenness in lattice theory
,
1943
.
[4]
E. V. Huntington,et al.
Sets of independent postulates for betweenness
,
1917
.
[5]
M. F. Smiley,et al.
Transitivities of Betweenness
,
1942
.
[6]
E. V. Huntington,et al.
A new set of postulates for betweenness, with proof of complete independence
,
1924
.
[7]
Peter M. Neumann,et al.
Relations related to betweenness : their structure and automorphisms
,
1998
.
[8]
John M. Cibulskis.
A Characterization of the Lattice Orderings on a Set which Induce a given Betweenness
,
1969
.
[9]
M. F. Smiley,et al.
Transitives of betweenness
,
1942
.
[10]
J. Truss.
Betweenness relations and cycle-free partial orders
,
1996,
Mathematical Proceedings of the Cambridge Philosophical Society.
[11]
R. P. Dilworth.
Review: G. Birkhoff, Lattice theory
,
1950
.
[12]
Martin Altwegg,et al.
Zur Axiomatik der teilweise geordneten Mengen
,
1950
.