KRAS-specific inhibition using a DARPin binding to a site in the allosteric lobe

[1]  T. Rabbitts,et al.  Bioluminescence Resonance Energy Transfer 2 (BRET2)‐Based RAS Biosensors to Characterize RAS Inhibitors , 2019, Current protocols in cell biology.

[2]  S. Phillips,et al.  Structure-based development of new RAS-effector inhibitors from a combination of active and inactive RAS-binding compounds , 2019, Proceedings of the National Academy of Sciences.

[3]  I. Khan,et al.  Targeting the α4-α5 dimerization interface of K-RAS inhibits tumor formation in vivo , 2018, Oncogene.

[4]  Narcis Fernandez-Fuentes,et al.  Small molecule inhibitors of RAS-effector protein interactions derived using an intracellular antibody fragment , 2018, Nature Communications.

[5]  S. Phillips,et al.  BRET-based RAS biosensors that show a novel small molecule is an inhibitor of RAS-effector protein-protein interactions , 2018, eLife.

[6]  Haiyun Wang,et al.  KRAS Dimerization Impacts MEK Inhibitor Sensitivity and Oncogenic Activity of Mutant KRAS , 2018, Cell.

[7]  P. Zarrinkar,et al.  Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor , 2018, Cell.

[8]  M. Neal Waxham,et al.  Spatiotemporal Analysis of K-Ras Plasma Membrane Interactions Reveals Multiple High Order Homo-oligomeric Complexes. , 2017, Journal of the American Chemical Society.

[9]  Jing Zhang,et al.  Structural and functional characterization of a DARPin which inhibits Ras nucleotide exchange , 2017, Nature Communications.

[10]  P. Lyne,et al.  Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS , 2017, Science Translational Medicine.

[11]  Matthew E. Welsch,et al.  Multivalent Small-Molecule Pan-RAS Inhibitors , 2017, Cell.

[12]  Wei Chen,et al.  Computational and biochemical characterization of two partially overlapping interfaces and multiple weak-affinity K-Ras dimers , 2017, Scientific Reports.

[13]  Marc Therrien,et al.  Inhibition of RAS function through targeting an allosteric regulatory site. , 2017, Nature chemical biology.

[14]  Ozlem Keskin,et al.  Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers. , 2016, The Biochemical journal.

[15]  C. Der,et al.  RAS isoforms and mutations in cancer at a glance , 2016, Journal of Cell Science.

[16]  F. McCormick K-Ras protein as a drug target , 2016, Journal of Molecular Medicine.

[17]  Frank McCormick,et al.  K-Ras protein as a drug target , 2016, Journal of Molecular Medicine.

[18]  Yi Liu,et al.  Selective Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive State. , 2016, Cancer discovery.

[19]  Neal Rosen,et al.  Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism , 2016, Science.

[20]  Ozlem Keskin,et al.  GTP-Dependent K-Ras Dimerization. , 2015, Structure.

[21]  Xiaolin Nan,et al.  Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway , 2015, Proceedings of the National Academy of Sciences.

[22]  Mitsuhiko Ikura,et al.  Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site , 2015, Proceedings of the National Academy of Sciences.

[23]  S. Fesik,et al.  Drugging the undruggable RAS: Mission Possible? , 2014, Nature Reviews Drug Discovery.

[24]  D. Esposito,et al.  Dragging ras back in the ring. , 2014, Cancer cell.

[25]  A. Breeze,et al.  1H, 13C and 15N resonance assignment for the human K-Ras at physiological pH , 2013, Biomolecular NMR assignments.

[26]  M. Therrien,et al.  Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization , 2013, Nature chemical biology.

[27]  I. Mellman,et al.  Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity , 2012, Proceedings of the National Academy of Sciences.

[28]  Dima Kozakov,et al.  Analysis of binding site hot spots on the surface of Ras GTPase. , 2011, Journal of molecular biology.

[29]  Harrison J. Hocker,et al.  Novel Allosteric Sites on Ras for Lead Generation , 2011, PloS one.

[30]  Julian Downward,et al.  RAS Interaction with PI3K: More Than Just Another Effector Pathway. , 2011, Genes & cancer.

[31]  Michel Bouvier,et al.  Multiplexing of multicolor bioluminescence resonance energy transfer. , 2010, Biophysical journal.

[32]  B. Vanhaesebroeck,et al.  The emerging mechanisms of isoform-specific PI3K signalling , 2010, Nature Reviews Molecular Cell Biology.

[33]  M. García-Díaz,et al.  Structure of the dominant negative S17N mutant of Ras. , 2010, Biochemistry.

[34]  I. Prior,et al.  Ras isoform abundance and signalling in human cancer cell lines , 2008, Oncogene.

[35]  Roger L. Williams,et al.  Tumour prevention by a single antibody domain targeting the interaction of signal transduction proteins with RAS , 2007, The EMBO journal.

[36]  Andreas Plückthun,et al.  Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display , 2006, Nature Biotechnology.

[37]  M. Groves,et al.  Affinity maturation of phage display antibody populations using ribosome display. , 2006, Journal of immunological methods.

[38]  John Kuriyan,et al.  The structural basis of the activation of Ras by Sos , 1998, Nature.