CRISPR somatic genome engineering and cancer modeling in the mouse pancreas and liver

[1]  Timothy E. Reddy,et al.  Transgenic mice for in vivo epigenome editing with CRISPR-based systems , 2021, Nature Methods.

[2]  D. Weissman,et al.  Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA , 2021, Nature Communications.

[3]  T. Flotte,et al.  Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice , 2020, Nature Communications.

[4]  Nicholas A. Peppas,et al.  Engineering precision nanoparticles for drug delivery , 2020, Nature reviews. Drug discovery.

[5]  Gennaro Sanità,et al.  Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization , 2020, Frontiers in Molecular Biosciences.

[6]  Yunxue Xu,et al.  Key considerations in designing CRISPR/Cas9-carrying nanoparticles for therapeutic genome editing. , 2020, Nanoscale.

[7]  S. Barry,et al.  Development of an ObLiGaRe Doxycycline Inducible Cas9 system for pre-clinical cancer drug discovery , 2020, Nature Communications.

[8]  Xiyu Liu,et al.  Precise and efficient silencing of mutant KrasG12D by CRISPR-CasRx controls pancreatic cancer progression , 2020, Theranostics.

[9]  J. Keith Joung,et al.  CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells , 2020, Nature Biotechnology.

[10]  E. Olson,et al.  Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing , 2020, Nature Communications.

[11]  David R. Liu,et al.  Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors , 2020, Nature Biotechnology.

[12]  David R. Liu,et al.  Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase , 2020, Nature Biotechnology.

[13]  Pawel Sledzinski,et al.  Computational Tools and Resources Supporting CRISPR-Cas Experiments , 2020, Cells.

[14]  J. Doench,et al.  Design and analysis of CRISPR–Cas experiments , 2020, Nature Biotechnology.

[15]  Oana M. Enache,et al.  Cas9 activates the p53 pathway and selects for p53-inactivating mutations , 2020, Nature Genetics.

[16]  Qiang Cheng,et al.  Selective ORgan Targeting (SORT) nanoparticles for tissue specific mRNA delivery and CRISPR/Cas gene editing , 2020, Nature Nanotechnology.

[17]  Zhijie Li,et al.  Modulation of metabolic functions through Cas13d-mediated gene knockdown in liver , 2020, Protein & Cell.

[18]  R. Herzog,et al.  Immune Responses to Viral Gene Therapy Vectors , 2020, Molecular therapy : the journal of the American Society of Gene Therapy.

[19]  Sebastian Lange,et al.  Analysis pipelines for cancer genome sequencing in mice , 2020, Nature Protocols.

[20]  S. Orkin,et al.  An Engineered CRISPR-Cas9 Mouse Line for Simultaneous Readout of Lineage Histories and Gene Expression Profiles in Single Cells , 2019, Cell.

[21]  David R. Liu,et al.  Search-and-replace genome editing without double-strand breaks or donor DNA , 2019, Nature.

[22]  Max J. Kellner,et al.  A cytosine deaminase for programmable single-base RNA editing , 2019, Science.

[23]  C. Gersbach,et al.  The next generation of CRISPR–Cas technologies and applications , 2019, Nature Reviews Molecular Cell Biology.

[24]  Mathias J Friedrich,et al.  PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice , 2019, Nature Communications.

[25]  Matthew C. Canver,et al.  CRISPResso2 provides accurate and rapid genome editing sequence analysis , 2019, Nature Biotechnology.

[26]  A. Maitra,et al.  A pipeline for rapidly generating genetically engineered mouse models of pancreatic cancer using in vivo CRISPR-Cas9-mediated somatic recombination , 2018, bioRxiv.

[27]  R. Rad,et al.  Engineering CRISPR mouse models of cancer. , 2019, Current opinion in genetics & development.

[28]  David R. Liu,et al.  Base editing: precision chemistry on the genome and transcriptome of living cells , 2018, Nature Reviews Genetics.

[29]  M. Robinson,et al.  Treatment of a metabolic liver disease by in vivo genome base editing in adult mice , 2018, Nature Medicine.

[30]  A. Cheng,et al.  CRISPR artificial splicing factors , 2018, bioRxiv.

[31]  T. Luedde,et al.  Necroptosis microenvironment directs lineage commitment in liver cancer , 2018, Nature.

[32]  Dana Carroll,et al.  Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo , 2018, Proceedings of the National Academy of Sciences.

[33]  D. Hougaard,et al.  Improved Lentiviral Gene Delivery to Mouse Liver by Hydrodynamic Vector Injection through Tail Vein , 2018, Molecular therapy. Nucleic acids.

[34]  Max A. Horlbeck,et al.  Combinatorial genetics in liver repopulation and carcinogenesis with a in vivo CRISPR activation platform , 2018, Hepatology.

[35]  Martin J. Aryee,et al.  In vivo CRISPR editing with no detectable genome-wide off-target mutations , 2018, Nature.

[36]  A. Bradley,et al.  Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements , 2018, Nature Biotechnology.

[37]  Kang Zhang,et al.  In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation. , 2018, Molecular therapy : the journal of the American Society of Gene Therapy.

[38]  Maximilian Haeussler,et al.  CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens , 2018, Nucleic Acids Res..

[39]  Eugene Chung,et al.  Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy , 2018, Nature Biotechnology.

[40]  P. Thakore,et al.  RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors , 2018, Nature Communications.

[41]  S. Konermann,et al.  Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors , 2018, Cell.

[42]  J. Pelletier,et al.  Inducible Genome Editing with Conditional CRISPR/Cas9 Mice , 2018, G3: Genes, Genomes, Genetics.

[43]  W. Harrington,et al.  A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing. , 2018, Cell reports.

[44]  G. Ronzitti,et al.  Influence of Pre-existing Anti-capsid Neutralizing and Binding Antibodies on AAV Vector Transduction , 2018, Molecular therapy. Methods & clinical development.

[45]  R. Schmid,et al.  Constitutive and Inducible Systems for Genetic In Vivo Modification of Mouse Hepatocytes Using Hydrodynamic Tail Vein Injection. , 2018, Journal of visualized experiments : JoVE.

[46]  Randall J. Platt,et al.  Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR–mediated direct in vivo screening , 2018, Science Advances.

[47]  Mathias J Friedrich,et al.  Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes , 2018, Nature.

[48]  M. Korc,et al.  Safety and Efficacy of AAV Retrograde Pancreatic Ductal Gene Delivery in Normal and Pancreatic Cancer Mice , 2017, Molecular therapy. Methods & clinical development.

[49]  Alexander A. Sousa,et al.  Enhanced proofreading governs CRISPR-Cas9 targeting accuracy Please share how this access benefits you. Your story matters , 2018 .

[50]  Huatai Xu,et al.  In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9-activator transgenic mice , 2018, Nature Neuroscience.

[51]  C. R. Esteban,et al.  In Vivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation , 2017, Cell.

[52]  Christopher D. McFarland,et al.  Multiplexed in vivo homology-directed repair and tumor barcoding enables parallel quantification of Kras variant oncogenicity , 2017, Nature Communications.

[53]  Max J. Kellner,et al.  RNA editing with CRISPR-Cas13 , 2017, Science.

[54]  Daniel G. Anderson,et al.  Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing , 2017, Nature Biotechnology.

[55]  Kiran Musunuru,et al.  In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing , 2017, Arteriosclerosis, thrombosis, and vascular biology.

[56]  Jennifer A. Doudna,et al.  Enhanced proofreading governs CRISPR-Cas9 targeting accuracy , 2017, Nature.

[57]  Neville E Sanjana,et al.  GUIDES: sgRNA design for loss-of-function screens , 2017, Nature Methods.

[58]  M. Capecchi,et al.  piggyBac mediates efficient in vivo CRISPR library screening for tumorigenesis in mice , 2017, Proceedings of the National Academy of Sciences.

[59]  Jos Jonkers,et al.  Genetically engineered mouse models in oncology research and cancer medicine , 2016, EMBO molecular medicine.

[60]  Jin-Soo Kim,et al.  Cas-analyzer: an online tool for assessing genome editing results using NGS data , 2016, Bioinform..

[61]  Ian D. McGilvray,et al.  Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[62]  Prashant Mali,et al.  A multifunctional AAV–CRISPR–Cas9 and its host response , 2016, Nature Methods.

[63]  Yonatan Stelzer,et al.  Editing DNA Methylation in the Mammalian Genome , 2016, Cell.

[64]  M. Manns,et al.  Administration of Gemcitabine After Pancreatic Tumor Resection in Mice Induces an Antitumor Immune Response Mediated by Natural Killer Cells. , 2016, Gastroenterology.

[65]  Jos Jonkers,et al.  Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland , 2016, Genes & development.

[66]  Christian Veltkamp,et al.  Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice , 2016, Nature Communications.

[67]  Meagan E. Sullender,et al.  Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 , 2015, Nature Biotechnology.

[68]  Mathias J Friedrich,et al.  CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice , 2015, Proceedings of the National Academy of Sciences.

[69]  Xiaowei Wang,et al.  WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system , 2015, Genome Biology.

[70]  Dian Yang,et al.  Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing , 2015, Genes & development.

[71]  Zhiping Weng,et al.  Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses. , 2015, Human gene therapy.

[72]  Christopher M. Vockley,et al.  Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers , 2015, Nature Biotechnology.

[73]  Lukas E Dow,et al.  Inducible in vivo genome editing with CRISPR/Cas9 , 2015, Nature Biotechnology.

[74]  Ron Weiss,et al.  Highly-efficient Cas9-mediated transcriptional programming , 2014, Nature Methods.

[75]  Alexandro E. Trevino,et al.  Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex , 2014, Nature.

[76]  Elif Karaca,et al.  Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. , 2014, Cell reports.

[77]  Ronald D. Vale,et al.  A Protein-Tagging System for Signal Amplification in Gene Expression and Fluorescence Imaging , 2014, Cell.

[78]  George M. Church,et al.  Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA) , 2014, Bioinform..

[79]  Joana A. Vidigal,et al.  In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system , 2014, Nature.

[80]  Robert Langer,et al.  CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling , 2014, Cell.

[81]  S. Kochanek,et al.  Pancreatic transduction by helper-dependent adenoviral vectors via intraductal delivery. , 2014, Human gene therapy.

[82]  Hao Yin,et al.  CRISPR-mediated direct mutation of cancer genes in the mouse liver , 2014, Nature.

[83]  George M. Church,et al.  CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing , 2014, Nucleic Acids Res..

[84]  Hao Yin,et al.  Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype , 2014, Nature Biotechnology.

[85]  M. Boutros,et al.  E-CRISP: fast CRISPR target site identification , 2014, Nature Methods.

[86]  E. Inada,et al.  Site-targeted non-viral gene delivery by direct DNA injection into the pancreatic parenchyma and subsequent in vivo electroporation in mice , 2013, Biotechnology journal.

[87]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[88]  C. von Kalle,et al.  Lentiviral vector-based insertional mutagenesis identifies genes associated with liver cancer , 2013, Nature Methods.

[89]  N. Ahituv,et al.  The hydrodynamic tail vein assay as a tool for the study of liver promoters and enhancers. , 2013, Methods in molecular biology.

[90]  Lili Wang,et al.  Inverse zonation of hepatocyte transduction with AAV vectors between mice and non-human primates. , 2011, Molecular genetics and metabolism.

[91]  J. Wienberg,et al.  Gain of chromosome band 7q11 in papillary thyroid carcinomas of young patients is associated with exposure to low-dose irradiation , 2011, Proceedings of the National Academy of Sciences.

[92]  Fergus J Couch,et al.  Inactivation of Brca2 promotes Trp53-associated but inhibits KrasG12D-dependent pancreatic cancer development in mice. , 2011, Gastroenterology.

[93]  Johannes Zuber,et al.  A Rapid and Scalable System for Studying Gene Function in Mice Using Conditional RNA Interference , 2011, Cell.

[94]  J. Agudo,et al.  In vivo genetic engineering of murine pancreatic beta cells mediated by single-stranded adeno-associated viral vectors of serotypes 6, 8 and 9 , 2011, Diabetologia.

[95]  James M. Wilson,et al.  AAV vectors avoid inflammatory signals necessary to render transduced hepatocyte targets for destructive T cells. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[96]  A. Berk,et al.  Robust In Vivo Transduction of a Genetically Stable Epstein-Barr Virus Episome to Hepatocytes in Mice by a Hybrid Viral Vector , 2009, Journal of Virology.

[97]  D. Mccarty Self-complementary AAV vectors; advances and applications. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[98]  C. von Kalle,et al.  Adeno-Associated Virus Vector Genomes Persist as Episomal Chromatin in Primate Muscle , 2008, Journal of Virology.

[99]  I. Alexander,et al.  Gene Delivery to the Juvenile Mouse Liver Using AAV2/8 Vectors. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[100]  A. Annoni,et al.  A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. , 2007, Blood.

[101]  L. Luo,et al.  A global double‐fluorescent Cre reporter mouse , 2007, Genesis.

[102]  A. Annoni,et al.  In vivo administration of lentiviral vectors triggers a type I interferon response that restricts hepatocyte gene transfer and promotes vector clearance. , 2007, Blood.

[103]  L. Belur,et al.  Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection , 2007, Nature Protocols.

[104]  D. Stolz,et al.  Structural impact of hydrodynamic injection on mouse liver , 2007, Gene Therapy.

[105]  R. Samulski,et al.  Adeno-associated virus serotypes: vector toolkit for human gene therapy. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[106]  E. Petricoin,et al.  Laser Capture Microdissection , 1996, Science.

[107]  Theresa A. Storm,et al.  Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[108]  Ralph Weissleder,et al.  Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Simon C Watkins,et al.  Widespread and stable pancreatic gene transfer by adeno-associated virus vectors via different routes. , 2006, Diabetes.

[110]  M. Chillón,et al.  Gutless adenovirus: last-generation adenovirus for gene therapy , 2005, Gene Therapy.

[111]  Xian-Yang Zhang,et al.  LSU Digital Commons LSU Digital Commons Altering the tropism of lentiviral vectors through pseudotyping Altering the tropism of lentiviral vectors through pseudotyping , 2022 .

[112]  M. Hashida,et al.  Hepatocyte-targeted gene transfer by combination of vascularly delivered plasmid DNA and in vivo electroporation , 2005, Gene Therapy.

[113]  J. Seppen,et al.  Kupffer cells and not liver sinusoidal endothelial cells prevent lentiviral transduction of hepatocytes. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[114]  A. Annoni,et al.  Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. , 2004, Blood.

[115]  G. Maelandsmo,et al.  Helper-Dependent Adenovirus Vectors Elicit Intact Innate but Attenuated Adaptive Host Immune Responses In Vivo , 2004, Journal of Virology.

[116]  D. Stolz,et al.  Hydroporation as the mechanism of hydrodynamic delivery , 2004, Gene Therapy.

[117]  N. Carter,et al.  Karyotyping mouse chromosomes by multiplex-FISH (M-FISH) , 2004, Chromosome Research.

[118]  R. Samulski,et al.  Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo , 2003, Gene Therapy.

[119]  Theresa A. Storm,et al.  Preclinical in vivo evaluation of pseudotyped adeno-associated virus vectors for liver gene therapy. , 2003, Blood.

[120]  Lili Wang,et al.  Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[121]  I. Verma,et al.  Biodistribution and toxicity studies of VSVG-pseudotyped lentiviral vector after intravenous administration in mice with the observation of in vivo transduction of bone marrow. , 2002, Molecular therapy : the journal of the American Society of Gene Therapy.

[122]  I. Verma,et al.  Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging. , 2001, Molecular therapy : the journal of the American Society of Gene Therapy.

[123]  Theresa A. Storm,et al.  Nonrandom Transduction of Recombinant Adeno-Associated Virus Vectors in Mouse Hepatocytes In Vivo: Cell Cycling Does Not Influence Hepatocyte Transduction , 2000, Journal of Virology.

[124]  J. Wolff,et al.  High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. , 1999, Human gene therapy.

[125]  Dexi Liu,et al.  Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA , 1999, Gene Therapy.

[126]  M. Kay,et al.  Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors , 1999, Nature Medicine.

[127]  Toshiyuki Matsuzaki,et al.  Direct gene transfer into rat liver cells by in vivo electroporation , 1998, FEBS letters.

[128]  R. Crystal,et al.  Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. , 1997, Human gene therapy.

[129]  T. Samulski,et al.  Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors , 1996, Journal of virology.

[130]  M. Weitzman,et al.  Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis , 1996, Journal of virology.

[131]  E. Furth,et al.  Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[132]  M. Kay,et al.  Assessment of recombinant adenoviral vectors for hepatic gene therapy. , 1993, Human gene therapy.

[133]  M. Perricaudet,et al.  Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. , 1991, Science.

[134]  David W. Melton,et al.  Targetted correction of a mutant HPRT gene in mouse embryonic stem cells , 1987, Nature.

[135]  A. Bradley,et al.  Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines , 1984, Nature.