The Amoroso Distribution
暂无分享,去创建一个
[1] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[2] R. Fisher. 036: On a Distribution Yielding the Error Functions of Several Well Known Statistics. , 1924 .
[3] K. Pearson. Contributions to the Mathematical Theory of Evolution , 1894 .
[4] James B. McDonald,et al. Some Generalized Functions for the Size Distribution of Income , 1984 .
[5] J. Gurland. Multidimensional Gaussian Distributions (Kenneth S. Miller) , 1966 .
[6] R. Prentice. A LOG GAMMA MODEL AND ITS MAXIMUM LIKELIHOOD ESTIMATION , 1974 .
[7] George Marsaglia,et al. A simple method for generating gamma variables , 2000, TOMS.
[8] M. Nakagami. The m-Distribution—A General Formula of Intensity Distribution of Rapid Fading , 1960 .
[9] D. Mcalister,et al. XIII. The law of the geometric mean , 1879, Proceedings of the Royal Society of London.
[10] R. Fisher,et al. Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.
[11] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[12] Ehsan S. Soofi,et al. Information measures for generalized gamma family , 2007 .
[13] Tapabrata Maiti,et al. Bayesian Data Analysis (2nd ed.) (Book) , 2004 .
[14] A. Brix. Bayesian Data Analysis, 2nd edn , 2005 .
[15] R. Baierlein. Probability Theory: The Logic of Science , 2004 .
[16] E. B. Wilson,et al. The Distribution of Chi-Square. , 1931, Proceedings of the National Academy of Sciences of the United States of America.
[17] Francis Galton,et al. XII. The geometric mean, in vital and social statistics , 1879, Proceedings of the Royal Society of London.
[18] Viorel Gh. Voda. New models in durability tool-testing: pseudo-Weibull distribution , 1989, Kybernetika.
[19] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[20] Lord Rayleigh F.R.S.. XII. On the resultant of a large number of vibrations of the same pitch and of arbitrary phase , 1880 .
[21] A. K. Erlang. The theory of probabilities and telephone conversations , 1909 .
[22] E. Stacy. A Generalization of the Gamma Distribution , 1962 .
[23] K. Pearson. Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material , 1895 .
[24] R. Gibrat,et al. Les inégalités économiques : applications, aux inégalitês des richesses, a la concentration des entreprises, aux populations des villes, aux statistiques des familles, etc. : d'une loi nouvelle la loi de l'effet proportionnel , 1931 .
[25] Arjun K. Gupta,et al. Handbook of beta distribution and its applications , 2004 .
[26] J. Pinton,et al. Universality of rare fluctuations in turbulence and critical phenomena , 1998, Nature.
[27] K. Chung. Review: William Feller, An Introduction to Probability Theory and its Applications 2 , 1973 .
[28] Karl Pearson,et al. Mathematical contributions to the theory of evolution.—X. Supplement to a memoir on skew variation , 1901, Proceedings of the Royal Society of London.
[29] E. Gumbel,et al. Statistics of extremes , 1960 .
[30] S. Kotz,et al. Statistical Size Distributions in Economics and Actuarial Sciences , 2003 .
[31] M. Evans. Statistical Distributions , 2000 .
[32] W. R. Hargraves,et al. Methods for Estimating Wind Speed Frequency Distributions. , 1978 .
[33] M. Fréchet. Sur la loi de probabilité de l'écart maximum , 1928 .
[34] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[35] James Clerk Maxwell,et al. V. Illustrations of the dynamical theory of gases.—Part I. On the motions and collisions of perfectly elastic spheres , 1860 .
[36] Kai Lai Chung,et al. Book Review — An Introduction to Probability Theory and its Applications 2, 2nd ed. , 2004 .
[37] Karl Pearson,et al. Mathematical Contributions to the Theory of Evolution. XIX. Second Supplement to a Memoir on Skew Variation , 1901 .
[38] O. Barndorff-Nielsen,et al. On the Limit Behaviour of Extreme Order Statistics , 1963 .
[39] John William Strutt,et al. Scientific Papers: On the Resultant of a large number of Vibrations of the same Pitch and of arbitrary Phase , 2009 .
[40] John K Kruschke,et al. Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.
[41] D. Kendall,et al. The Statistical Analysis of Variance‐Heterogeneity and the Logarithmic Transformation , 1946 .
[42] L. M. M.-T.. Theory of Probability , 1929, Nature.
[43] Douglas M. Hawkins,et al. A Note on the Transformation of Chi-Squared Variables to Normality , 1986 .
[44] W. Weibull. A Statistical Distribution Function of Wide Applicability , 1951 .
[45] L. Joseph,et al. Bayesian Statistics: An Introduction , 1989 .
[46] D. Sornette,et al. Stretched exponential distributions in nature and economy: “fat tails” with characteristic scales , 1998, cond-mat/9801293.
[47] A. D. Moivre. The Doctrine of Chances , 2016, The Doctrine of Chances.