Mixture of Gaussians based robust sparse representation for erratic noise suppression

[1]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[2]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[3]  Qiang Zhao,et al.  Signal-Preserving Erratic Noise Attenuation via Iterative Robust Sparsity-Promoting Filter , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[4]  James A. Cadzow,et al.  Signal enhancement-a composite property mapping algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[5]  Mauricio D. Sacchi,et al.  Interpolation and denoising of high-dimensional seismic data by learning a tight frame , 2015 .

[6]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[7]  Mauricio D. Sacchi,et al.  Robust reduced-rank filtering for erratic seismic noise attenuation , 2015 .

[8]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[9]  Jinghuai Gao,et al.  Seismic Simultaneous Source Separation via Patchwise Sparse Representation , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Yangkang Chen,et al.  Damped multichannel singular spectrum analysis for 3D random noise attenuation , 2016 .

[11]  Mauricio D. Sacchi,et al.  Interpolation and extrapolation using a high-resolution discrete Fourier transform , 1998, IEEE Trans. Signal Process..

[12]  V. Maz'ya,et al.  On approximate approximations using Gaussian kernels , 1996 .

[13]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[14]  Felix J. Herrmann,et al.  Non-parametric seismic data recovery with curvelet frames , 2008 .