High-power all-solid-state batteries using sulfide superionic conductors

[1]  Kota Suzuki,et al.  Structure-property relationships in lithium superionic conductors having a Li10GeP2S12-type structure. , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[2]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[3]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[4]  M. Hirayama,et al.  Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1−xMx)P2S12 (M = Si, Sn) , 2014 .

[5]  A. Robinson,et al.  Solid-state batteries enter EV fray , 2014 .

[6]  Alexander Kuhn,et al.  A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[7]  Xu Xu,et al.  Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na3V2(PO4)3 Nanograins for High‐Performance Symmetric Sodium‐Ion Batteries , 2014, Advanced materials.

[8]  Hong‐Jie Peng,et al.  Nanoarchitectured Graphene/CNT@Porous Carbon with Extraordinary Electrical Conductivity and Interconnected Micro/Mesopores for Lithium‐Sulfur Batteries , 2014 .

[9]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[10]  Klaus Zick,et al.  Li10SnP2S12: an affordable lithium superionic conductor. , 2013, Journal of the American Chemical Society.

[11]  A. Hayashi,et al.  All-solid-state lithium secondary batteries using the 75Li2S·25P2S5 glass and the 70Li2S·30P2S5 glass—ceramic as solid electrolytes , 2013 .

[12]  John N. Harb,et al.  Performance characteristics of lithium coin cells for use in wireless sensing systems: Transient behavior during pulse discharge , 2013 .

[13]  John B. Goodenough,et al.  Rechargeable batteries: challenges old and new , 2012, Journal of Solid State Electrochemistry.

[14]  Tetsuro Kobayashi,et al.  Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte , 2012 .

[15]  Petr Novák,et al.  Hybridization of electrochemical capacitors and rechargeable batteries: An experimental analysis of , 2011 .

[16]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[17]  Shuo Chen,et al.  High-power lithium batteries from functionalized carbon-nanotube electrodes. , 2010, Nature nanotechnology.

[18]  François Béguin,et al.  A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte , 2010 .

[19]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[20]  G. Graff,et al.  Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage , 2010 .

[21]  M. Yonemura,et al.  Rietveld analysis software for J-PARC , 2009 .

[22]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[23]  M. Armand,et al.  Building better batteries , 2008, Nature.

[24]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[25]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[26]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[27]  T. Abe,et al.  Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte-A Key to Enhancing the Rate Capability of Lithium-Ion Batteries , 2005 .

[28]  S. Kondo,et al.  Lithium ion conductive oxysulfide, Li3PO4–Li3PS4 , 2005 .

[29]  A. Yamada,et al.  A Self-Assembled Breathing Interface for All-Solid-State Ceramic Lithium Batteries , 2004 .

[30]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[31]  Takeshi Abe,et al.  Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte , 2004 .

[32]  Masaru Miyayama,et al.  Mg Intercalation Properties into V 2 O 5 gel/Carbon Composites under High-Rate Condition , 2003 .

[33]  Piercarlo Mustarelli,et al.  7Li and 19F diffusion coefficients and thermal properties of non-aqueous electrolyte solutions for rechargeable lithium batteries , 1999 .

[34]  K. Aoki,et al.  Chronoamperometry of strong acids without supporting electrolyte , 1999 .

[35]  R. Frech,et al.  Vibrational spectroscopic and electrochemical studies of the low and high temperature phases of LiCo1−x MxO2 (M = Ni or Ti) , 1996 .

[36]  M. Sakata,et al.  Accurate structure analysis by the maximum‐entropy method , 1990 .

[37]  Kota Suzuki,et al.  Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2−δS12 , 2015 .

[38]  Kota Suzuki,et al.  Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+δP2-δS12 (M = Si, Sn). , 2014, Faraday discussions.

[39]  David G. Kwabi,et al.  The Kinetics and Product Characteristics of Oxygen Reduction and Evolution in LiO2 Batteries , 2014 .

[40]  Peter G. Bruce,et al.  The Lithium Air Battery , 2014 .

[41]  M. Winter,et al.  Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide–N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries , 2013 .

[42]  까림 자그힙,et al.  Lithium-air battery , 2011 .

[43]  G. Nagasubramanian Electrical characteristics of 18650 Li-ion cells at low temperatures , 2001 .

[44]  Marie C. Hoepfl,et al.  Challenges Old and New , 2000 .

[45]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .