Use of AVHRR Data for the Study of Vegetation Fires in Africa: Fire Management Perspectives

Environmentally, the direct and indirect effect of the increasing anthropogenic pressure on tropical ecosystems are often related to fire. However, fire can be seen in a dual perspective clearly summed up by Wein (1991) in the first issue of the International Journal of Wildland Fire: “Fire is viewed in some instances as the most globally destructive tool used by industrial societies. Yet for many purposes fire is the most environmentally safe, economically sound, and socially acceptable tool that can be used to achieve wildland goals”. National and international agencies are more and more convinced that a policy of fire suppression is surely not a sustainable solution in a socio-economic perspective and that it could have negative drawbacks on conservation policies. In such a conflictual context, emphasis should be put on the management of man-made fires and their use in development policies. Still, reliable information on fire dynamics are lacking at local, continental and global scales. Remote sensing technology can contribute to the documentation of this key element in the human-environment interactions. Among the remote sensing tools actually available, the NOAA-AVHRR (Advanced Very High Resolution Radiometer) system, although originally designed for meteorological applications, has proved to be very efficient for the detection and monitoring of vegetation fires.

[1]  J. Lacaux,et al.  Precipitation chemistry in the Mayombé forest of equatorial Africa , 1992 .

[2]  P. Kennedy,et al.  An improved approach to fire monitoring in West Africa usingAVHRR data , 1994 .

[3]  P. Moore Answers that lie in the soil , 1989, Nature.

[4]  Jennifer M. Robinson,et al.  On uncertainty in the computation of global emissions from biomass burning , 1989 .

[5]  A. Setzer,et al.  Spectral characteristics of fire scars in Landsat-5 TM images of Amazonia , 1993 .

[6]  J. Lacaux,et al.  Biogenic emissions and biomass burning influences on the chemistry of the fogwater and stratiform precipitations in the African equatorial forest , 1992 .

[7]  B. V. Wilgen,et al.  The role of vegetation structure and fuel chemistry in excluding fire from forest patches in the fire prone fynbos shrublands of south africa , 1990 .

[8]  J. Barber,et al.  Monitoring grassland dryness and fire potential in australia with NOAA/AVHRR data , 1988 .

[9]  F. González-Vila,et al.  FIRE‐INDUCED TRANSFORMATION OF SOIL ORGANIC MATTER FROM AN OAK FOREST: AN EXPERIMENTAL APPROACH TO THE EFFECTS OF FIRE ON HUMIC SUBSTANCES , 1990 .

[10]  Jean-Marie Fritsch,et al.  Les effets du défrichement de la forêt amazonienne et de la mise en culture sur l'hydrologie de petits bassins versants : opération ECEREX en Guyane française , 1990 .

[11]  J. Ricardo,et al.  Multispectral remote sensing of biomass burning in West Africa , 1995 .

[12]  Johann G. Goldammer,et al.  Fire in the Environment: The Ecological, Atmospheric, and Climatic Importance of Vegetation Fires , 1994 .

[13]  G. D'Souza,et al.  In-situ, real-time fire detection using NOAA/AVHRR data , 1993 .

[14]  David M. J. S. Bowman,et al.  Response of Eucalyptus forest and woodland to four fire regimes at Munmarlary, Northern Territory, Australia , 1988 .

[15]  G. King,et al.  Stress Triggering of the 1994 M = 6.7 Northridge, California, Earthquake by Its Predecessors , 1994, Science.

[16]  Yoram J. Kaufman,et al.  Remote sensing of biomass burning in the tropics , 1990 .

[17]  S. Langaas Temporal and Spatial Distribution of Savanna Fires in Senegal and The Gambia, West Africa, 1989-90, Derived from Multi-temporal AVHRR Night Images , 1992 .

[18]  M. L. Huertas,et al.  Numerical simulation of the ozone chemistry observed over forested tropical areas during DECAFE experiments , 1992 .

[19]  J. Levine Influence of Biomass Burning Emissions on Precipitation Chemistry in the Equatorial Forests of Africa , 1991 .

[20]  Jennifer Robinson,et al.  Fire from space : global fire evaluation using infrared remote sensing , 1991 .

[21]  R. Delmas,et al.  Seasonal trends of ozone in equatorial Africa: Experimental evidence of photochemical formation , 1988 .

[22]  J. Levine Biomass Burning Aerosols in a Savanna Region of the Ivory Coast , 1991 .

[23]  J. Grégoire,et al.  Dynamiques de saturation du signal dans la bande 3 du senseur AVHRR: Handicap majeur ou source d'information pour la surveillance de l'environnement en milieu soudano-guinéen d'Afrique de 1'Ouest? , 1993 .

[24]  J. Dauget,et al.  Evolution sur 20 ans d'une parcelle de savane boisée non protégée du feu dans la réserve de Lamto (Côte-d'Ivoire) , 1992 .

[25]  A. S. Belward,et al.  The limitations and potential of AVHRR GAC data for continental scale fire studies , 1994 .

[26]  A. S. Belward,et al.  Limitations to the identification of spatial structures from AVHRR data , 1990 .

[27]  M. Mbaye,et al.  NOAA-AVHRR and GIS-Based Monitoring of Fire Activity in Senegal — a Provisional Methodology and Potential Applications , 1990 .

[28]  Christine A. O'Neill,et al.  Effects of Aerosol from Biomass Burning on the Global Radiation Budget , 1992, Science.

[29]  J. G. Goldammer,et al.  Fire in the tropical biota : ecosystem processes and global challenges , 1991 .

[30]  C. Skarpe,et al.  Dynamics of savanna ecosystems , 1992 .