Submicron InP DHBT Technology for High-Speed High-Swing Mixed-Signal ICs

We report on the development of a submicron InP DHBT technology, optimized for the fabrication of ges50-GHz- clock mixed-signal ICs. In-depth study of device geometry and structure has allowed to get the needed performances and yield. Special attention has been paid to critical thermal behavior. Various size submicron devices have been modeled using UCSD- HBT equations. These large signal models have allowed the design of 50-GHz clocked 50 G Decision and 100 G Selector circuits. The high quality of the measured characteristics demonstrates the suitability of this technology for the various applications of interest, like 100 Gbit/s transmission.

[1]  A. Konczykowska,et al.  InP DHBT Technology Development for High Bitrate Mixed-Signal IC Fabrication , 2006, 2006 International Conference on Indium Phosphide and Related Materials Conference Proceedings.

[2]  M. Schlechtweg,et al.  Fundamental W-Band InP DHBT-Based VCOs With Low Phase Noise and Wide Tuning Range , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[3]  Y. Chen,et al.  Submicron InP D-HBT single-stage distributed amplifier with 17 dB gain and over 110 GHz bandwidth , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[4]  W. Deal,et al.  Demonstration of 184 and 255-GHz Amplifiers Using InP HBT Technology , 2008, IEEE Microwave and Wireless Components Letters.

[5]  Tom K. Johansen,et al.  Improved Extrinsic Base Resistance Extraction for InP DHBT Devices , 2008 .

[6]  A. Gutierrez,et al.  Ultra wideband digital to analog conversion based on advanced InP DHBT technology , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[7]  Mark J. W. Rodwell,et al.  InP Bipolar ICs: Scaling Roadmaps, Frequency Limits, Manufacturable Technologies , 2008, Proceedings of the IEEE.

[8]  Z. Griffith,et al.  Transistor and circuit design for 100-200-GHz ICs , 2005, IEEE Journal of Solid-State Circuits.

[9]  A. Gutierrez,et al.  High-Speed InP HBT Technology for Advanced Mixed-signal and Digital Applications , 2007, 2007 IEEE International Electron Devices Meeting.

[10]  K. Ishii,et al.  Very-High-Speed InP/InGaAs HBT Multiplexer ICs for Optical Communication Systems , 2006, 2006 International Symposium on Intelligent Signal Processing and Communications.

[11]  V. Krozer,et al.  Large-Signal Modeling of High-Speed InP DHBTs using Electromagnetic Simulation Based De-embedding , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[12]  A. Konczykowska,et al.  A Novel Method for HBT Intrinsic Collector Resistance Extraction from S-Parameters , 2007, 2007 Asia-Pacific Microwave Conference.

[13]  Agnieszka Konczykowska,et al.  InGaAs/InP DHBT technology and design methodology for over 40 Gb/s optical communication circuits , 2001 .

[14]  R. Milano,et al.  Self-aligned InP DHBTs for 150 GHz digital and mixed signal circuits , 2005, International Conference on Indium Phosphide and Related Materials, 2005.

[15]  A. Gutierrez-Aitken,et al.  Ultra high speed direct digital synthesizer using InP DHBT technology , 2001, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 23rd Annual Technical Digest 2001 (Cat. No.01CH37191).

[16]  T. Kjellberg,et al.  A 165-Gb/s 4:1 multiplexer in InP DHBT technology , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[17]  P. Berdaguer,et al.  Comparative collector design in InGaAs and GaAsSb based InP DHBTs , 2008, 2008 20th International Conference on Indium Phosphide and Related Materials.

[18]  Z. Griffith,et al.  Thermal limitations of InP HBTs in 80- and 160-gb ICs , 2004, IEEE Transactions on Electron Devices.