A Note on Uniform Circuit Lower Bounds for the Counting Hierarchy (Extended Abstract)
暂无分享,去创建一个
[1] Neil Immerman,et al. On Uniformity within NC¹ , 1990, J. Comput. Syst. Sci..
[2] Michael J. Fischer,et al. Separating Nondeterministic Time Complexity Classes , 1978, JACM.
[3] Georg Schnitger,et al. Parallel Computation with Threshold Functions , 1988, J. Comput. Syst. Sci..
[4] David A. Mix Barrington,et al. Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.
[5] Eric Allender,et al. Almost-Everywhere Complexity Hierarchies for Nondeterministic Time , 1993, Theor. Comput. Sci..
[6] Alexander A. Razborov,et al. Natural Proofs , 2007 .
[7] Roman Smolensky,et al. Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.
[8] Stanislav Zák,et al. A Turing Machine Time Hierarchy , 1983, Theor. Comput. Sci..
[9] J. Håstad. Computational limitations of small-depth circuits , 1987 .
[10] Eric Allender,et al. A Uniform Circuit Lower Bound for the Permanent , 1994, SIAM J. Comput..
[11] Andrew Chi-Chih Yao,et al. Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.
[12] Heribert Vollmer,et al. Nondeterministic NC/sup 1/ computation , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).
[13] A. Razborov. Lower bounds on the size of bounded depth circuits over a complete basis with logical addition , 1987 .
[14] Heribert Vollmer,et al. Nondeterministic NC 1 Computation. , 1996 .