Exact algorithms for OWA-optimization in multiobjective spanning tree problems

This paper deals with the multiobjective version of the optimal spanning tree problem. More precisely, we are interested in determining the optimal spanning tree according to an Ordered Weighted Average (OWA) of its objective values. We first show that the problem is weakly NP-hard. We then propose different mixed integer programming formulations, according to different subclasses of OWA functions. Furthermore, we provide various preprocessing procedures, the validity scopes of which depend again on the considered subclass of OWA functions. For designing such procedures, we propose generalized optimality conditions and efficiently computable bounds. These procedures enable to reduce the size of the instances before launching an off-the-shelf software for solving the mixed integer program. Their impact on the resolution time is evaluated on the basis of numerical experiments.

[1]  Olivier Spanjaard,et al.  OWA-Based Search in State Space Graphs with Multiple Cost Functions , 2007, FLAIRS Conference.

[2]  Daniel Vanderpooten,et al.  Approximating Min-Max (Regret) Versions of Some Polynomial Problems , 2006, COCOON.

[3]  Mikael Lind,et al.  On bicriterion minimal spanning trees: An approximation , 1996, Comput. Oper. Res..

[4]  D. Schmeidler Integral representation without additivity , 1986 .

[5]  A. Smilde,et al.  Multicriteria decision making , 1992 .

[6]  Sanjiv Kapoor,et al.  Algorithms for Enumerating All Spanning Trees of Undirected and Weighted Graphs , 1995, SIAM J. Comput..

[7]  Tomasz Radzik,et al.  Computing all efficient solutions of the biobjective minimum spanning tree problem , 2008, Comput. Oper. Res..

[8]  L. Wolsey,et al.  Chapter 9 Optimal trees , 1995 .

[9]  Elemer E. Rosinger,et al.  Beyond preference information based multiple criteria decision making , 1991 .

[10]  Daniel Vanderpooten,et al.  Min-max and min-max regret versions of combinatorial optimization problems: A survey , 2009, Eur. J. Oper. Res..

[11]  Francis Sourd,et al.  A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem , 2008, INFORMS J. Comput..

[12]  János C. Fodor,et al.  Characterization of the ordered weighted averaging operators , 1995, IEEE Trans. Fuzzy Syst..

[13]  Vicenç Torra,et al.  The weighted OWA operator , 1997, Int. J. Intell. Syst..

[14]  Olivier Spanjaard,et al.  Deux approches complémentaires pour un problème d'arbre couvrant robuste , 2007 .

[15]  S. Nickel,et al.  Multicriteria Planar Ordered Median Problems , 2005 .

[16]  Justo Puerto,et al.  A unified approach to network location problems , 1999, Networks.

[17]  G. Yu,et al.  Min-Max Optimization of Several Classical Discrete Optimization Problems , 1998 .

[18]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[19]  S. Alonso,et al.  The problem of the optimal biobjective spanning tree , 1998, Eur. J. Oper. Res..

[20]  Wlodzimierz Ogryczak,et al.  On efficient WOWA optimization for decision support under risk , 2009, Int. J. Approx. Reason..

[21]  Simon French,et al.  Multiple Criteria Decision Making: Theory and Application , 1981 .

[22]  Patrice Perny,et al.  A Branch and Bound Algorithm for Choquet Optimization in Multicriteria Problems , 2008, MCDM.

[23]  Abraham P. Punnen,et al.  Minmax combinatorial optimization , 1995 .

[24]  Theodor J. Stewart,et al.  Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems : Proceedings of the 19th International Conference on Multiple Criteria Decision Making, Auckland, New Zealand, 7th - 12th January 2008 , 2010 .

[25]  H. Moulin,et al.  Axioms of Cooperative Decision Making. , 1990 .

[26]  Daniel Vanderpooten,et al.  Approximation of min-max and min-max regret versions of some combinatorial optimization problems , 2007, Eur. J. Oper. Res..

[27]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[28]  Patrice Perny,et al.  Search for Choquet-optimal paths under uncertainty , 2007, UAI.

[29]  Hande Yaman,et al.  The robust spanning tree problem with interval data , 2001, Oper. Res. Lett..

[30]  Pierre Hansen,et al.  Bicriterion Path Problems , 1980 .

[31]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[32]  X. Gandibleux,et al.  Approximative solution methods for multiobjective combinatorial optimization , 2004 .

[33]  Franz Kappel,et al.  An Implementation of Shor's r-Algorithm , 2000, Comput. Optim. Appl..

[34]  Justo Puerto,et al.  Location Theory - A Unified Approach , 2005 .

[35]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[36]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[37]  Toshihide Ibaraki,et al.  An Algorithm for Finding K Minimum Spanning Trees , 1981, SIAM J. Comput..

[38]  Patrice Perny,et al.  An Axiomatic Approach to Robustness in Search Problems with Multiple Scenarios , 2002, UAI.

[39]  Patrice Perny,et al.  A decision-theoretic approach to robust optimization in multivalued graphs , 2006, Ann. Oper. Res..

[40]  H. Moulin Axioms of Cooperative Decision Making , 1988 .

[41]  Wlodzimierz Ogryczak,et al.  Minimizing the sum of the k largest functions in linear time , 2003, Inf. Process. Lett..

[42]  Justo Puerto,et al.  A flexible model and efficient solution strategies for discrete location problems , 2009, Discret. Appl. Math..

[43]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[44]  Mihalis Yannakakis,et al.  On the approximability of trade-offs and optimal access of Web sources , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[45]  Sung-Pil Hong,et al.  A fully polynomial bicriteria approximation scheme for the constrained spanning tree problem , 2004, Oper. Res. Lett..

[46]  Wlodzimierz Ogryczak,et al.  Inequality measures and equitable approaches to location problems , 2000, Eur. J. Oper. Res..

[47]  Justo Puerto,et al.  Exact procedures for solving the discrete ordered median problem , 2006, Comput. Oper. Res..

[48]  Matthias Ehrgott,et al.  Solving biobjective combinatorial max-ordering problems by ranking methods and a two-phases approach , 2003, European Journal of Operational Research.

[49]  Jean-Luc Marichal,et al.  Aggregation operators for multicriteria decision aid , 1998 .

[50]  Francesco Mason,et al.  Properties of the k-centra in a tree network , 1985, Networks.

[51]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[52]  Horst W. Hamacher,et al.  On spanning tree problems with multiple objectives , 1994, Ann. Oper. Res..

[53]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[54]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[55]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[56]  Ronald R. Yager,et al.  Nonmonotonic OWA operators , 1999, Soft Comput..

[57]  Peter Eades,et al.  On Optimal Trees , 1981, J. Algorithms.

[58]  Wlodzimierz Ogryczak,et al.  On solving linear programs with the ordered weighted averaging objective , 2003, Eur. J. Oper. Res..

[59]  Arthur Warburton,et al.  Worst case analysis of greedy and related heuristics for some min-max combinatorial optimization problems , 1985, Math. Program..

[60]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[61]  David B. Shmoys,et al.  A New Approach to Computing Optimal Schedules for the Job-Shop Scheduling Problem , 1996, IPCO.