Mathematical modelling and numerical approximation of a leachate flow in the anaerobic biodegradation of waste in a landfill

Abstract We consider a coupled PDE-ODE model governing the bacterial dynamics of the anaerobic biodegradation of household waste in a landfill. The biological activity, represented with a non linear system of ordinary differential equations (ODE), takes place in an unsaturated porous medium represented by Darcy law. We transform the initial system of equations into a fully PDE model where the bacterial distribution is spatialized as reaction–diffusion equations. We carry out the mathematical and numerical analysis of the new model and its discrete counterpart in a variational framework. Using mixed finite elements approximation for the nonlinear Darcy flow and standard finite elements to solve the reaction–diffusion system, we perform several numerical simulations in 2D and 3D in agreement with the theoretical results.

[1]  Jacques Monod,et al.  LA TECHNIQUE DE CULTURE CONTINUE THÉORIE ET APPLICATIONS , 1978 .

[2]  Dieter Bothe,et al.  Global wellposedness for a class of reaction–advection–anisotropic-diffusion systems , 2016, 1602.02798.

[3]  Alain Rapaport,et al.  Extension of the Chemostat model with flocculation , 2011 .

[4]  Modélisation des écoulements de fluides et des transferts de chaleur au sein des déchets ménagers. Application à la réinjection de lixiviat dans un centre de stockage , 2001 .

[5]  John F. Andrews,et al.  A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates , 1968 .

[6]  Jérôme Harmand,et al.  A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1) , 2015 .

[7]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[8]  Alain Rapaport,et al.  Shape optimization of spatial chemostat models , 2019 .

[9]  P. Neubauer,et al.  Anaerobic Digestion Model (AM2) for the Description of Biogas Processes at Dynamic Feedstock Loading Rates , 2017 .

[10]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[11]  Sandra Lanini,et al.  Analyse et modélisation des transferts de masse et de chaleur au sein des décharges d'ordures ménagères , 1998 .

[12]  William G. Gray,et al.  Essentials of Multiphase Flow and Transport in Porous Media , 2008 .

[13]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[14]  Denis Dochain,et al.  Dynamical modelling and estimation in wastewater treatment processes. , 2015 .

[15]  C. Prud'homme,et al.  Mathematical modeling and numerical simulation of a bioreactor landfill using Feel , 2016, 1601.05556.

[16]  Alain Rapaport,et al.  Analysis of an anaerobic digestion model in landfill with mortality term , 2020, Communications on Pure & Applied Analysis.

[17]  Gianmarco Manzini,et al.  A fully coupled numerical model for two-phase flow with contaminant transport and biodegradation kinetics , 2001 .

[18]  Rodrigo Navia,et al.  Is biodegradable waste a porous environment? A review , 2012, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[19]  Gaylon S. Campbell,et al.  A SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE RETENTION DATA , 1974 .

[20]  Mikhail Ivanov Krastanov,et al.  Model-based optimization of biogas production in an anaerobic biodegradation process , 2014, Comput. Math. Appl..

[21]  D. Chenu Modélisation des transferts réactifs de masse et de chaleur dans les installations de stockage de déchets ménagers : application aux installations de type bioréacteur , 2007 .

[22]  A Genovesi,et al.  Dynamical model development and parameter identification for an anaerobic wastewater treatment process. , 2001, Biotechnology and bioengineering.

[23]  M. Rouez Dégradation anaérobie de déchets solides : caractérisation, facteurs d'influence et modélisations , 2008 .

[24]  D. Bucur,et al.  Finite element approximation of the Neumann eigenvalue problem in domains with multiple cracks , 2006 .

[25]  Modélisation des écoulements diphasiques bioactifs dans les installations de stockage de déchets , 2009 .

[26]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[27]  D. Dinkler,et al.  Numerical modelling of multiphase flow and transport processes in landfills , 2006, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[28]  O. Monga,et al.  Modeling Microbial Decomposition in Real 3D Soil Structures Using Partial Differential Equations , 2013 .

[29]  Brahim Benyahia,et al.  Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes , 2012 .

[30]  Brahim Cherki,et al.  A Luenberger-type observer for the AM2 model , 2015 .

[31]  Jérôme Harmand,et al.  Evaluation of alkalinity spatial distribution in an up-flow fixed bed anaerobic digester. , 2018, Water science and technology : a journal of the International Association on Water Pollution Research.

[32]  Anne-Julie Tinet Contribution à l'étude des transferts de fluides dans les installations de stockage des déchets non dangereux , 2011 .

[33]  Alain Rapaport,et al.  About biomass overyielding of mixed cultures in batch processes. , 2020, Mathematical biosciences.

[34]  Antoine Rousseau,et al.  Simulation of spatially distributed intensive biological systems , 2020, 2020 European Control Conference (ECC).

[35]  X. Zou,et al.  Coexistence of Competing Species for Intermediate Dispersal Rates in a Reaction–Diffusion Chemostat Model , 2020, Journal of Dynamics and Differential Equations.