Hierarchy of genuine multipartite quantum correlations

Classifying states which exhibiting different statistical correlations is among the most important problems in quantum information science and quantum many-body physics. In bipartite case, there is a clear hierarchy of states with different correlations: total correlation (T) $\supsetneq$ discord (D) $\supsetneq$ entanglement (E) $\supsetneq$ steering (S) $\supsetneq$ Bell~nonlocality (NL). However, very little is known about genuine multipartite correlations (GM$\mathcal{C}$) for both conceptual and technical difficulties. In this work, we show that, for any $N$-partite qudit states, there also exist such a hierarchy: genuine multipartite total correlations (GMT) $\supseteq$ genuine multipartite discord (GMD) $\supseteq$ genuine multipartite entanglement (GME) $\supseteq$ genuine multipartite steering (GMS) $\supseteq$ genuine multipartite nonlocality (GMNL). Furthermore, by constructing precise states, we show that GMT, GME and GMS are inequivalent with each other, thus GMT $\supsetneq$ GME $\supsetneq$ GMS.

[1]  M. Seevinck,et al.  Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. , 2002, Physical review letters.

[2]  S. Luo Using measurement-induced disturbance to characterize correlations as classical or quantum , 2008 .

[3]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[4]  Stefano Pironio,et al.  Definitions of multipartite nonlocality , 2011, 1112.2626.

[5]  Francesco Buscemi,et al.  All entangled quantum states are nonlocal. , 2011, Physical review letters.

[6]  J. Barrett Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality , 2001, quant-ph/0107045.

[7]  Remigiusz Augusiak,et al.  Local hidden–variable models for entangled quantum states , 2014, 1405.7321.

[8]  G. Tóth,et al.  Noise robustness of the nonlocality of entangled quantum states. , 2007, Physical review letters.

[9]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[10]  A Acín,et al.  Entanglement and Nonlocality are Inequivalent for Any Number of Parties. , 2014, Physical review letters.

[11]  Fred Garnett,et al.  Colloquium , 2008, Br. J. Educ. Technol..

[12]  Tamás Vértesi,et al.  Algorithmic Construction of Local Hidden Variable Models for Entangled Quantum States. , 2015, Physical review letters.

[13]  V. Scarani,et al.  Bell-type inequalities to detect true n-body nonseparability. , 2002, Physical review letters.

[14]  M D Reid,et al.  Genuine multipartite Einstein-Podolsky-Rosen steering. , 2012, Physical review letters.

[15]  N. Gisin,et al.  Grothendieck's constant and local models for noisy entangled quantum states , 2006, quant-ph/0606138.

[16]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[17]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[18]  David Jennings,et al.  Quantum steering ellipsoids. , 2013, Physical review letters.

[19]  W. P. Bowen,et al.  Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications , 2008, 0806.0270.

[20]  R. Zambrini,et al.  Genuine quantum and classical correlations in multipartite systems. , 2011, Physical review letters.

[21]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[22]  D Cavalcanti,et al.  General Method for Constructing Local Hidden Variable Models for Entangled Quantum States. , 2015, Physical review letters.

[23]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[24]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[25]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[26]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[27]  R. Augusiak,et al.  Constructing genuinely entangled multipartite states with applications to local hidden variables and local hidden states models , 2018, Physical Review A.

[28]  N. Brunner,et al.  One-way Einstein-Podolsky-Rosen Steering , 2014, 1402.3607.

[29]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[30]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[31]  Davide Girolami,et al.  Quantifying genuine multipartite correlations and their pattern complexity , 2017, Physical review letters.

[32]  Huai-Xin Lu,et al.  Experimental demonstration of tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger-Horne-Zeilinger–class states , 2011 .

[33]  Szil'ard Szalay,et al.  Partial separability revisited II: Multipartite entanglement measures , 2015, 1503.06071.

[34]  B. Zeng,et al.  Quantum Information Meets Quantum Matter , 2015, Quantum Science and Technology.

[35]  S. Massar Nonlocality, closing the detection loophole, and communication complexity , 2001, quant-ph/0109008.

[36]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[37]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[38]  Nicolas Gisin,et al.  Detecting genuine multipartite quantum nonlocality: a simple approach and generalization to arbitrary dimensions. , 2010, Physical review letters.

[39]  J. Lavoie,et al.  Experimental violation of Svetlichny's inequality , 2009, 0909.0789.

[40]  J. Preskill Work: Quantum Information and Computation , 1998 .

[41]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[42]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[43]  Alain Aspect,et al.  Speakable and Unspeakable in Quantum Mechanics: On the Einstein–Podolsky–Rosen paradox , 2004 .

[44]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[45]  Svetlichny,et al.  Distinguishing three-body from two-body nonseparability by a Bell-type inequality. , 1987, Physical review. D, Particles and fields.

[46]  J. Preskill,et al.  Causal and localizable quantum operations , 2001, quant-ph/0102043.

[47]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[48]  Miguel Navascués,et al.  Operational framework for nonlocality. , 2011, Physical review letters.

[49]  N. Brunner,et al.  Genuine hidden quantum nonlocality. , 2013, Physical review letters.

[50]  Daniel Cavalcanti,et al.  Inequivalence of entanglement, steering, and Bell nonlocality for general measurements , 2015, 1501.03332.

[51]  S. Massar,et al.  Bell inequalities for arbitrarily high-dimensional systems. , 2001, Physical review letters.