Perceptual Strategies Under Constrained Movements on a Zoomable Haptic Mobile Device

This study shows that zooming and pointing strategies are influenced by visual constraints when using a haptic mobile device. Participants were required to point on invisible targets that were only detectable via a tactile feedback. Movements were either constrained or unconstrained. Results revealed that pointing and zooming strategies depended on the order of training. Participants who started their training with unconstrained movements, kept using the same strategies even when constraints have been removed. This suggests that constrained movements allowed participants to explore other strategies that would have not been available and extended their repertoire of exploratory strategies related to the haptic zoom.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  R. Palluel-Germain,et al.  Visual and motor constraints on trajectory planning in pointing movements , 2004, Neuroscience Letters.

[3]  Vincent Hayward,et al.  Tactile feedback can assist vision during mobile interactions , 2011, CHI.

[4]  Lars Erik Holmquist,et al.  Focus+context visualization with flip zooming and the zoom browser , 1997, CHI Extended Abstracts.

[5]  Karl U. Smith,et al.  The human factors of workstation telepresence , 1990 .

[6]  Vincent Hayward,et al.  A role for haptics in mobile interaction: initial design using a handheld tactile display prototype , 2006, CHI.

[7]  Charles Lenay,et al.  Perceptive Supplementation for an Access to Graphical Interfaces , 2007, HCI.

[8]  W. Marsden I and J , 2012 .

[9]  Michael A. Peshkin,et al.  Restoring physicality to touch interaction with programmable friction , 2011, 2011 IEEE International Conference on Consumer Electronics (ICCE).

[10]  Charles Lenay,et al.  Design of a Haptic Zoom: levels and steps , 2007, Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC'07).

[11]  Y. Coello,et al.  Pointing movement visually controlled through a video display: adaptation to scale change , 2000, Ergonomics.

[12]  Michael I. Jordan,et al.  Constrained and unconstrained movements involve different control strategies. , 1997, Journal of neurophysiology.

[13]  Charles Lenay,et al.  Haptic recognition of shapes at different scales: A comparison of two methods of interaction , 2007, Interact. Comput..

[14]  Heinrich H. Bülthoff,et al.  Touch can change visual slant perception , 2000, Nature Neuroscience.

[15]  R. Klatzky,et al.  Hand movements: A window into haptic object recognition , 1987, Cognitive Psychology.

[16]  E. Reed The Ecological Approach to Visual Perception , 1989 .

[17]  Vincent Hayward,et al.  Tactile suppression of displacement , 2010, Experimental Brain Research.

[18]  Constantine Stephanidis,et al.  Universal Access in Human-Computer Interaction , 2011 .

[19]  Daniel M. Johnson,et al.  Enhancing physicality in touch interaction with programmable friction , 2011, CHI.

[20]  Satoshi Tadokoro,et al.  Virtual Active Touch: Perception of Virtual Gratings Wavelength through Pointing-Stick Interface , 2012, IEEE Transactions on Haptics.

[21]  Charles Lenay,et al.  Manipulation d'un zoom haptique continu via un dispo-sitif de substitution sensorielle , 2007, IHM '07.

[22]  D. Norman The psychology of everyday things , 1990 .

[23]  Blake Hannaford,et al.  Anisotropies of touch in haptic icon exploration , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[24]  Vincent Hayward,et al.  Ebbinghaus illusion in the tactile modality , 2014, 2014 IEEE Haptics Symposium (HAPTICS).

[25]  Benjamin B. Bederson,et al.  Space-scale diagrams: understanding multiscale interfaces , 1995, CHI '95.

[26]  Julie Messier,et al.  Differential effect of task conditions on errors of direction and extent of reaching movements , 1997, Experimental Brain Research.

[27]  Patrick Baudisch,et al.  Back-of-device interaction allows creating very small touch devices , 2009, CHI.

[28]  V. Hayward A brief taxonomy of tactile illusions and demonstrations that can be done in a hardware store , 2008, Brain Research Bulletin.

[29]  Eric Lecolinet,et al.  TACTIBALL,TACTIPEN,TACTITAB Ou comment « toucher du doigt » les données de son ordinateur , 2005, IHM '05.