A general procedure for deriving stabilized space–time finite element methods for advective–diffusive problems

A procedure to derive stabilized space-time finite element methods for advective-diffusive problems is presented. The starting point is the stabilized balance equation for the transient case derived by Onate using a finite increment calculus approach. A description of the new stabilization method and a procedure for computing the stabilization parameter of the space-time solution is given. The efficiency of the stabilization approach is shown in the solution of some transient advective-diffusive problems, including the non-linear Burger's equation

[1]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[2]  R. Codina Comparison of some finite element methods for solving the diffusion-convection-reaction equation , 1998 .

[3]  Eugenio Oñate,et al.  Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems , 1998 .

[4]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[5]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[6]  F. Shakib Finite element analysis of the compressible Euler and Navier-Stokes equations , 1989 .

[7]  E. Oñate,et al.  An alpha-adaptive approach for stabilized finite element solution of advective-diffusive problems with sharp gradients , 1998 .

[8]  Jukka Saranen,et al.  Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations , 1986 .

[9]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  J. Z. Zhu,et al.  The finite element method , 1977 .

[12]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .

[13]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[14]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms , 1991 .

[15]  T. Tezduyar,et al.  Space-time finite element computation of compressible flows involving moving boundaries and interfaces☆ , 1993 .

[16]  Nils-Erik Wiberg,et al.  Error estimation and adaptive procedures based on superconvergent patch recovery (SPR) techniques , 1997 .

[17]  Thomas J. R. Hughes,et al.  A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems , 1997 .

[18]  Eugenio Oñate,et al.  COMPUTATION OF THE STABILIZATION PARAMETER FOR THE FINITE ELEMENT SOLUTION OF ADVECTIVE-DIFFUSIVE PROBLEMS , 1997 .

[19]  Richard S. Falk,et al.  Explicit Finite Element Methods for Linear Hyperbolic Systems , 2000 .

[20]  Tayfun E. Tezduyar,et al.  Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems , 1986 .

[21]  Peter Hansbo,et al.  On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws , 1990 .

[22]  Thomas J. R. Hughes,et al.  Space-time finite element methods for second-order hyperbolic equations , 1990 .