RBFN based MPPT algorithm for PV system with high step up converter

Abstract This paper proposes a neural network (NN) based maximum power point tracking (MPPT) algorithm for photovoltaic (PV) system with a high step–up converter design. The proposed methodology uses Radial Basis Function Network (RBFN) in NN algorithm for MPPT and the results are compared with classical perturb and observe (P&O) method and incremental conductance (INC) method. Also, to improve the voltage rating, a new modified Single Ended Primary Inductor Converter (SEPIC) is proposed and the results are validated with boost and SEPIC converter. The performance of the proposed algorithm is verified for various irradiance and temperature conditions.

[1]  Wuhua Li,et al.  Review of Nonisolated High-Step-Up DC/DC Converters in Photovoltaic Grid-Connected Applications , 2011, IEEE Transactions on Industrial Electronics.

[2]  Whei-Min Lin,et al.  Neural-Network-Based MPPT Control of a Stand-Alone Hybrid Power Generation System , 2011, IEEE Transactions on Power Electronics.

[3]  N. D. Kaushika,et al.  Simulation model of ANN based maximum power point tracking controller for solar PV system , 2011 .

[4]  J. Amador,et al.  A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances , 2007 .

[5]  Mohammad Taghi Ameli,et al.  Economical load distribution in power networks that include hybrid solar power plants , 2008 .

[6]  Ahmed Fathy,et al.  Reliable and efficient approach for mitigating the shading effect on photovoltaic module based on Modified Artificial Bee Colony algorithm , 2015 .

[7]  Roger Gules,et al.  A modified SEPIC converter with high static gain for renewable applications , 2014, XI Brazilian Power Electronics Conference.

[8]  Quan Li,et al.  A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies With Three Different DC Link Configurations , 2008, IEEE Transactions on Power Electronics.

[9]  Hossin Hosseinian,et al.  Power Electronics , 2020, 2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES).

[10]  L. Zhang,et al.  Application of radial basis function networks for solar-array modelling and maximum power-point prediction , 2000 .

[11]  Shuhui Li,et al.  Integrating photovoltaic and power converter characteristics for energy extraction study of solar PV systems , 2011 .

[12]  B. Zahawi,et al.  Assessment of Perturb and Observe MPPT Algorithm Implementation Techniques for PV Pumping Applications , 2012, IEEE Transactions on Sustainable Energy.

[13]  Giorgio Graditi,et al.  Photovoltaic optimizer boost converters: Temperature influence and electro-thermal design , 2014 .

[14]  Mohammad Hassan Moradi,et al.  Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review , 2013 .

[15]  Ramazan Akkaya,et al.  DSP implementation of a PV system with GA-MLP-NN based MPPT controller supplying BLDC motor drive , 2007 .

[16]  Esam H. Ismail,et al.  A high voltage ratio and low stress DC–DC converter with reduced input current ripple for fuel cell source , 2015 .

[17]  Saad Mekhilef,et al.  Simulation and Hardware Implementation of Incremental Conductance MPPT With Direct Control Method Using Cuk Converter , 2011, IEEE Transactions on Industrial Electronics.

[18]  Varaprasad Janamala,et al.  Application of Artificial Neural Networks in optimizing MPPT control for standalone solar PV system , 2014, 2014 International Conference on Contemporary Computing and Informatics (IC3I).

[19]  David D. Lara,et al.  Power converter with maximum power point tracking MPPT for small wind-electric pumping systems , 2015 .

[20]  Kashif Ishaque,et al.  An Improved Particle Swarm Optimization (PSO)–Based MPPT for PV With Reduced Steady-State Oscillation , 2012, IEEE Transactions on Power Electronics.

[21]  S Ahmed,et al.  High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids , 2011, IEEE Transactions on Power Electronics.

[22]  Alessandro Salvini,et al.  A Neural Network-Based Low-Cost Solar Irradiance Sensor , 2014, IEEE Transactions on Instrumentation and Measurement.

[23]  S. Saravanan,et al.  Maximum power point tracking algorithms for photovoltaic system – A review , 2016 .

[24]  P.L. Chapman,et al.  Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques , 2007, IEEE Transactions on Energy Conversion.

[25]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[26]  M. Muthuramalingam,et al.  Comparative analysis of distributed MPPT controllers for partially shaded stand alone photovoltaic systems , 2014 .

[27]  G. Garcera,et al.  Sensitivity Study of the Dynamics of Three-Phase Photovoltaic Inverters With an LCL Grid Filter , 2009, IEEE Transactions on Industrial Electronics.

[28]  Daniel Hissel,et al.  A review on DC/DC converter architectures for power fuel cell applications , 2015 .

[29]  J. W. Park,et al.  Maximum Power Point Tracking Controller for Thermoelectric Generators with Peak Gain Control of Boost DC–DC Converters , 2012, Journal of Electronic Materials.

[30]  Chih-Ming Hong,et al.  Maximum power point tracking-based control algorithm for PMSG wind generation system without mechanical sensors , 2013 .

[31]  Nasrudin Abd Rahim,et al.  Fuzzy-Logic-Controller-Based SEPIC Converter for Maximum Power Point Tracking , 2014 .

[32]  Mohsen Kalantar Posicast control within feedback structure for a DC-DC single ended primary inductor converter in renewable energy applications , 2010 .

[33]  A. Messai,et al.  FPGA-based real time implementation of MPPT-controller for photovoltaic systems , 2011 .

[34]  Engin Karatepe,et al.  Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system , 2009 .

[35]  M. Kesraoui,et al.  Maximum power point tracker of wind energy conversion system , 2011 .

[36]  A. Iqbal,et al.  Adaptive neuro-fuzzy inference system based maximum power point tracking of a solar PV module , 2010, 2010 IEEE International Energy Conference.

[37]  Yihua Hu,et al.  New multi-stage DC-DC converters for grid-connected photovoltaic systems , 2015 .

[38]  Esam H. Ismail,et al.  High voltage step-up integrated double Boost–Sepic DC–DC converter for fuel-cell and photovoltaic applications , 2015 .

[39]  Bidyadhar Subudhi,et al.  A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems , 2013, IEEE Transactions on Sustainable Energy.

[40]  Hassan K. Khalil,et al.  Output feedback control of nonlinear systems using RBF neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[41]  S. Saravanan,et al.  INCREMENTAL CONDUCTANCE BASED MPPT FOR PV SYSTEM USING BOOST AND SEPIC CONVERTER , 2015 .

[42]  P.F. de Melo,et al.  A Modified SEPIC Converter for High-Power-Factor Rectifier and Universal Input Voltage Applications , 2010, IEEE Transactions on Power Electronics.

[43]  Jubaer Ahmed,et al.  A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability , 2014 .

[44]  J.A.M. Bleijs,et al.  An overview of DC–DC converter topologies for fuel cell-ultracapacitor hybrid distribution system , 2015 .

[45]  M. Vitelli,et al.  Optimization of perturb and observe maximum power point tracking method , 2005, IEEE Transactions on Power Electronics.

[46]  Fernando L. M. Antunes,et al.  A maximum power point tracker for PV systems using a high performance boost converter , 2006 .

[47]  N. Dasgupta,et al.  High-Performance Algorithms for Drift Avoidance and Fast Tracking in Solar MPPT System , 2008, IEEE Transactions on Energy Conversion.

[48]  Yong Kang,et al.  A Variable Step Size INC MPPT Method for PV Systems , 2008, IEEE Transactions on Industrial Electronics.

[49]  Kashif Ishaque,et al.  A Deterministic Particle Swarm Optimization Maximum Power Point Tracker for Photovoltaic System Under Partial Shading Condition , 2013, IEEE Transactions on Industrial Electronics.