Knowledge-based Data Mining Using Semantic Web☆

Semantic web offers a smarter web service which synchronizes and arranges all the data over web in a disciplined manner. In data mining over web, the accuracy of selecting necessary data according to user demand and pick them for output is considered as a major challenging task over the years. This paper proposes an approach to mapping data over the web 3.0 through ontology and access the required data via an intelligent agent. The agent provides all the searched data related to user query from which user can find desired information. When the user does not have sufficient search parameter, knowledge can be perceived from the information provided by the agent. The derivation of such unknown knowledge from the existing can be achieved by semantic web mining. We present an intelligent agent-based web mining model where users’ query is being searched by following existing traditional way, e.g. by Google. The intelligent agent checks the searched data and derives only those are the semantically related to users search parameter. A work-in-progress case study of University Faculty Information presented to examine the effectiveness of the proposed model.