Configurational entropy change of netropsin and distamycin upon DNA minor-groove binding.

Binding of a small molecule to a macromolecular target reduces its conformational freedom, resulting in a negative entropy change that opposes the binding. The goal of this study is to estimate the configurational entropy change of two minor-groove-binding ligands, netropsin and distamycin, upon binding to the DNA duplex d(CGCGAAAAACGCG).d(CGCGTTTTTCGCG). Configurational entropy upper bounds based on 10-ns molecular dynamics simulations of netropsin and distamycin in solution and in complex with DNA in solution were estimated using the covariance matrix of atom-positional fluctuations. The results suggest that netropsin and distamycin lose a significant amount of configurational entropy upon binding to the DNA minor groove. The estimated changes in configurational entropy for netropsin and distamycin are -127 J K(-1) mol(-1) and -104 J K(-1) mol(-1), respectively. Estimates of the configurational entropy contributions of parts of the ligands are presented, showing that the loss of configurational entropy is comparatively more pronounced for the flexible tails than for the relatively rigid central body.

[1]  H. Berendsen,et al.  Free energy determination of polypeptide conformations generated by molecular dynamics , 1984 .

[2]  Mark A. Miller,et al.  Why is it so difficult to simulate entropies, free energies, and their differences? , 2001, Accounts of chemical research.

[3]  P. Kollman,et al.  Relative binding affinities of distamycin and its analog to d(CGCAAGTTGGC).d(GCCAACTTGCG): comparison of simulation results with experiment. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Andrew E. Torda,et al.  The GROMOS biomolecular simulation program package , 1999 .

[5]  J G Pelton,et al.  Structural characterization of a 2:1 distamycin A.d(CGCAAATTGGC) complex by two-dimensional NMR. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Chaires,et al.  Sequence and structural selectivity of nucleic acid binding ligands. , 1999, Biochemistry.

[7]  D. Beveridge,et al.  Structure and axis curvature in two dA6·dT6 DNA oligonucleotides: Comparison of molecular dynamics simulations with results from crystallography and NMR spectroscopy , 2004 .

[8]  A V Finkelstein,et al.  The price of lost freedom: entropy of bimolecular complex formation. , 1989, Protein engineering.

[9]  X. Daura,et al.  Entropy calculations on a reversibly folding peptide: Changes in solute free energy cannot explain folding behavior , 2001, Proteins.

[10]  M. Orozco,et al.  Cooperativity in drug-DNA recognition: a molecular dynamics study. , 2001, Journal of the American Chemical Society.

[11]  R. Hertzberg,et al.  Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyl-EDTA.Fe(II). , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Michael K Gilson,et al.  Evaluating the Accuracy of the Quasiharmonic Approximation. , 2005, Journal of chemical theory and computation.

[13]  J. Lah,et al.  Binding of distamycin A and netropsin to the 12mer DNA duplexes containing mixed AT.GC sequences with at most five or three successive AT base pairs. , 2000, Biochemistry.

[14]  D. Goodsell,et al.  The molecular origin of DNA-drug specificity in netropsin and distamycin. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[15]  W. V. van Gunsteren,et al.  Estimating entropies from molecular dynamics simulations. , 2004, The Journal of chemical physics.

[16]  J. Chaires,et al.  Specific binding of hoechst 33258 to the d(CGCAAATTTGCG)2 duplex: calorimetric and spectroscopic studies. , 1997, Journal of molecular biology.

[17]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[18]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[19]  M. Searle,et al.  Sequence-dependent variation in DNA minor groove width dictates orientational preference of Hoechst 33258 in A-tract recognition: solution NMR structure of the 2:1 complex with d(CTTTTGCAAAAG)(2). , 2000, Nucleic acids research.

[20]  Adam R. Urbach,et al.  Structure of a beta-alanine-linked polyamide bound to a full helical turn of purine tract DNA in the 1:1 motif. , 2002, Journal of molecular biology.

[21]  William A. Goddard,et al.  The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids , 2003 .

[22]  J. Chaires,et al.  Energetics of drug-DNA interactions. , 1997, Biopolymers.

[23]  D. Goodsell,et al.  Binding of an antitumor drug to DNA, Netropsin and C-G-C-G-A-A-T-T-BrC-G-C-G. , 1984, Journal of molecular biology.

[24]  M. Karplus,et al.  Method for estimating the configurational entropy of macromolecules , 1981 .

[25]  K. Breslauer,et al.  Enthalpy-entropy compensations in drug-DNA binding studies. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Mclachlan Gene duplications in the structural evolution of chymotrypsin. , 1979, Journal of molecular biology.

[27]  D. Beveridge,et al.  Free energy via molecular simulation: applications to chemical and biomolecular systems. , 1989, Annual review of biophysics and biophysical chemistry.

[28]  S. Mackay,et al.  Short lexitropsin that recognizes the DNA minor groove at 5'-ACTAGT-3': understanding the role of isopropyl-thiazole. , 2004, Journal of the American Chemical Society.

[29]  B. Ramakrishnan,et al.  Binding of two distamycin A molecules in the minor groove of an alternating B–DNA duplex , 1994, Nature Structural Biology.

[30]  V. Sasisekharan,et al.  Interaction of synthetic analogues of distamycin with poly(dA-dT): role of the conjugated N-methylpyrrole system. , 1987, Biochemistry.

[31]  D. Wemmer,et al.  Interaction of minor groove ligands to an AAATT/AATTT site: correlation of thermodynamic characterization and solution structure. , 1995, Biochemistry.

[32]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[33]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[34]  Chris Oostenbrink,et al.  Molecular dynamics simulations and free energy calculations of netropsin and distamycin binding to an AAAAA DNA binding site , 2005, Nucleic acids research.

[35]  Wilfred F van Gunsteren,et al.  Comparison of atomic-level and coarse-grained models for liquid hydrocarbons from molecular dynamics configurational entropy estimates. , 2006, The journal of physical chemistry. B.

[36]  Wilfred F. van Gunsteren,et al.  Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications , 1989 .

[37]  Christophe Chipot,et al.  Free Energy Calculations. The Long and Winding Gilded Road , 2002 .

[38]  Wilma K Olson,et al.  Knowledge-based elastic potentials for docking drugs or proteins with nucleic acids. , 2005, Biophysical journal.

[39]  A. Cooper,et al.  Thermodynamic analysis of biomolecular interactions. , 1999, Current opinion in chemical biology.

[40]  W. Wilson,et al.  Intercalation binding of 6‐substituted naphthothiopheneamides to DNA: Enthalpy and entropy components , 1991, Biopolymers.

[41]  H. Dyson,et al.  Intrinsically unstructured proteins and their functions , 2005, Nature Reviews Molecular Cell Biology.

[42]  R. S. Spolar,et al.  Coupling of local folding to site-specific binding of proteins to DNA. , 1994, Science.

[43]  Thomas E Cheatham,et al.  Simulation and modeling of nucleic acid structure, dynamics and interactions. , 2004, Current opinion in structural biology.

[44]  A. Lyubartsev,et al.  Molecular dynamics simulation study of oriented polyamine‐ and Na‐DNA: Sequence specific interactions and effects on DNA structure , 2004, Biopolymers.

[45]  U. Pindur,et al.  DNA Complexing Minor Groove-Binding Ligands: Perspectives in Antitumour and Antimicrobial Drug Design , 1999, Current Medicinal Chemistry.

[46]  J. Šponer,et al.  Crystal structure of d(GGCCAATTGG) complexed with DAPI reveals novel binding mode. , 1999, Biochemistry.

[47]  J M Briggs,et al.  Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA. , 1997, Journal of molecular biology.

[48]  Kirk W. Johnson,et al.  DNA binding ligands targeting drug-resistant bacteria: structure, activity, and pharmacology. , 2003, Journal of medicinal chemistry.

[49]  Lukas D. Schuler,et al.  On the Choice of Dihedral Angle Potential Energy Functions for n-Alkanes , 2000 .

[50]  R. Wells,et al.  Netropsin. A specific probe for A-T regions of duplex deoxyribonucleic acid. , 1974, The Journal of biological chemistry.

[51]  T. P. Straatsma,et al.  Free Energy by Molecular Simulation , 2007 .

[52]  Wilfred F. van Gunsteren,et al.  Absolute entropies from molecular dynamics simulation trajectories , 2000 .

[53]  B. Tidor Molecular dynamics simulations , 1997, Current Biology.

[54]  Chris Oostenbrink,et al.  An improved nucleic acid parameter set for the GROMOS force field , 2005, J. Comput. Chem..

[55]  Christian Bailly,et al.  Targeting DNA with novel diphenylcarbazoles. , 2004, Biochemistry.

[56]  R. Hockney The potential calculation and some applications , 1970 .

[57]  A. Amadei,et al.  A Theoretical Model for the Folding/Unfolding Thermodynamics of Single-Domain Proteins, Based on the Quasi-Gaussian Entropy Theory , 2004 .

[58]  Luc Van Meervelt,et al.  Two 1 : 1 binding modes for distamycin in the minor groove of d(GGCCAATTGG). , 2002, European journal of biochemistry.

[59]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[60]  Mika A. Kastenholz,et al.  Influence of artificial periodicity and ionic strength in molecular dynamics simulations of charged biomolecules employing lattice-sum methods , 2004 .

[61]  Ronald M. Levy,et al.  Entropy−Enthalpy Compensation in Solvation and Ligand Binding Revisited , 1998 .

[62]  D. Goodsell,et al.  Refinement of netropsin bound to DNA: bias and feedback in electron density map interpretation. , 1995, Biochemistry.

[63]  H. Berendsen,et al.  ENTROPY ESTIMATION FROM SIMULATIONS OF NON-DIFFUSIVE SYSTEMS , 1984 .

[64]  Pavel Hobza,et al.  Molecular dynamics simulations and thermodynamics analysis of DNA-drug complexes. Minor groove binding between 4',6-diamidino-2-phenylindole and DNA duplexes in solution. , 2003, Journal of the American Chemical Society.

[65]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[66]  J. Lah,et al.  Energetic diversity of DNA minor-groove recognition by small molecules displayed through some model ligand-DNA systems. , 2004, Journal of molecular biology.

[67]  D. Beveridge,et al.  Assessment of the molecular dynamics structure of DNA in solution based on calculated and observed NMR NOESY volumes and dihedral angles from scalar coupling constants. , 2003, Biopolymers.

[68]  Ioan Andricioaei,et al.  On the calculation of entropy from covariance matrices of the atomic fluctuations , 2001 .

[69]  Tim N. Heinz,et al.  Comparison of four methods to compute the dielectric permittivity of liquids from molecular dynamics simulations , 2001 .

[70]  D. Wemmer,et al.  Binding modes of distamycin A with d(CGCAAATTTGCG)2 determined by two-dimensional NMR , 1990 .

[71]  J. Schlitter Estimation of absolute and relative entropies of macromolecules using the covariance matrix , 1993 .

[72]  K. Liedl,et al.  Significance of ligand tails for interaction with the minor groove of B-DNA. , 2001, Biophysical journal.

[73]  C. Bailly,et al.  Comparative thermodynamics for monomer and dimer sequence-dependent binding of a heterocyclic dication in the DNA minor groove. , 2002, Journal of molecular biology.

[74]  T. Cheatham,et al.  Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise * , 2000, Biopolymers.

[75]  Peter A. Kollman,et al.  CALCULATING THE ABSOLUTE FREE ENERGY OF ASSOCIATION OF NETROPSIN AND DNA , 1999 .

[76]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[77]  R. Baron,et al.  Configurational entropies of lipids in pure and mixed bilayers from atomic-level and coarse-grained molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[78]  M. Waring,et al.  Energetics of echinomycin binding to DNA. , 2003, Nucleic acids research.

[79]  Jens Carlsson,et al.  Absolute and relative entropies from computer simulation with applications to ligand binding. , 2005, The journal of physical chemistry. B.

[80]  J. Chaires,et al.  Energetics of DNA intercalation reactions. , 2000, Biochemistry.

[81]  K. Liedl,et al.  Simulation of EcoRI Dodecamer Netropsin Complex Confirms Class I Complexation Mode , 2000 .

[82]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[83]  Mark A. Williams,et al.  The extended interface: measuring non-local effects in biomolecular interactions. , 2004, Current opinion in structural biology.