Geometric ergodicity for families of homogeneous Markov chains

In this paper we find nonasymptotic exponential upper bounds for the deviation in the ergodic theorem for families of homogeneous Markov processes. We find some sufficient conditions for geometric ergodicity uniformly over a parametric family. We apply this property to the nonasymptotic nonparametric estimation problem for ergodic diffusion processes.

[1]  T. Lindvall Lectures on the Coupling Method , 1992 .

[2]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[3]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[4]  M. Aschwanden Statistics of Random Processes , 2021, Biomedical Measurement Systems and Data Science.

[5]  Gareth O. Roberts,et al.  Convergence Properties of Perturbed Markov Chains , 1998, Journal of Applied Probability.

[6]  D. Florens-zmirou,et al.  Estimation of the coefficients of a diffusion from discrete observations , 1986 .

[7]  Uniform concentration inequality for ergodic diffusion processes observed at discrete times , 2011, 1109.3406.

[8]  Gareth O. Roberts,et al.  Quantitative Bounds for Convergence Rates of Continuous Time Markov Processes , 1996 .

[9]  C. Klüppelberg,et al.  Renewal Theory for Functionals of a Markov Chain with Compact State Space , 2003 .

[10]  E. Nummelin,et al.  Geometric ergodicity of Harris recurrent Marcov chains with applications to renewal theory , 1982 .

[11]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[12]  S. Pergamenshchikov,et al.  Nonparametric Sequential Minimax Estimation of the Drift Coefficient in Diffusion Processes , 2005 .

[13]  E. Renshaw,et al.  STOCHASTIC DIFFERENTIAL EQUATIONS , 1974 .

[14]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[15]  Y. Kabanov,et al.  Two-scale stochastic systems , 2002 .

[16]  Serguei Pergamenchtchikov,et al.  The tail of the stationary distribution of a random coefficient AR(q) model , 2004 .

[17]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[18]  Uniform concentration inequality for ergodic diffusion processes , 2007 .

[19]  L. Galtchouk,et al.  Adaptive sequential estimation for ergodic diffusion processes in quadratic metric , 2007, 0804.1715.

[20]  S. Pergamenshchikov,et al.  Two-Scale Stochastic Systems: Asymptotic Analysis and Control , 2010 .

[21]  E. Nummelin General irreducible Markov chains and non-negative operators: Notes and comments , 1984 .

[22]  S. Meyn,et al.  Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .

[23]  E. Nummelin,et al.  A splitting technique for Harris recurrent Markov chains , 1978 .

[24]  P. Baxendale Renewal theory and computable convergence rates for geometrically ergodic Markov chains , 2005, math/0503515.

[25]  Paul D. Feigin,et al.  RANDOM COEFFICIENT AUTOREGRESSIVE PROCESSES:A MARKOV CHAIN ANALYSIS OF STATIONARITY AND FINITENESS OF MOMENTS , 1985 .

[26]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. 1 , 1967 .

[27]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.