Reversible Monadic Computing
暂无分享,去创建一个
[1] B. Jacobs,et al. A tutorial on (co)algebras and (co)induction , 1997 .
[2] Benoît Valiron,et al. A Lambda Calculus for Quantum Computation with Classical Control , 2005, TLCA.
[3] Bart Jacobs,et al. On Block Structures in Quantum Computation , 2013, MFPS.
[4] Dusko Pavlovic,et al. Quantum measurements without sums , 2007 .
[5] M. Keyl. Fundamentals of quantum information theory , 2002, quant-ph/0202122.
[6] Bart Jacobs. Coalgebraic Walks, in Quantum and Turing Computation , 2011, FoSSaCS.
[7] Bart Jacobs,et al. Semantics of Weakening and Contraction , 1994, Ann. Pure Appl. Log..
[8] A. Kock. Strong functors and monoidal monads , 1972 .
[9] Harvey Wolff,et al. Monads and monoids on symmetric monoidal closed categories , 1973 .
[10] J. Vicary. Categorical Formulation of Finite-Dimensional Quantum Algebras , 2008, 0805.0432.
[11] Dexter Kozen,et al. Semantics of probabilistic programs , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[12] Jaap van Oosten,et al. The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. http: //homotopytypetheory.org/book, Institute for Advanced Study, 2013, vii + 583 pp , 2014, Bulletin of Symbolic Logic.
[13] Michael Barr,et al. Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.
[14] Ohad Kammar,et al. Handlers in action , 2013, ICFP.
[15] Jamie Vicary,et al. Categorical Formulation of Quantum Algebras , 2008 .
[16] Samson Abramsky,et al. A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..
[17] P. Aczel,et al. Homotopy Type Theory: Univalent Foundations of Mathematics , 2013 .
[18] Chris Heunen,et al. Relative Frobenius algebras are groupoids , 2011, 1112.1284.
[19] Dusko Pavlovic,et al. Geometry of abstraction in quantum computation , 2010, Classical and Quantum Information Assurance Foundations and Practice.
[20] P. Selinger. A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.
[21] Ian Mackie,et al. Semantic Techniques in Quantum Computation , 2009 .
[22] Alexis De Vos,et al. Matrix Calculus for Classical and Quantum Circuits , 2014, JETC.
[23] Bart Jacobs,et al. Involutive Categories and Monoids, with a GNS-Correspondence , 2010, ArXiv.
[24] Samson Abramsky,et al. Abstract Scalars, Loops, and Free Traced and Strongly Compact Closed Categories , 2005, CALCO.
[25] Ross Street,et al. Frobenius monads and pseudomonoids , 2004 .
[26] Bart Jacobs,et al. Under Consideration for Publication in J. Functional Programming Categorical Semantics for Arrows , 2022 .
[27] Dusko Pavlovic,et al. Relating Toy Models of Quantum Computation: Comprehension, Complementarity and Dagger Mix Autonomous Categories , 2010, QPL@MFPS.
[28] N. Saheb-Djahromi,et al. CPO'S of Measures for Nondeterminism , 1980, Theor. Comput. Sci..
[29] M. E. Szabo. Algebra of proofs , 1978 .
[30] Dan Marsden,et al. Category Theory Using String Diagrams , 2014, ArXiv.
[31] Ichiro Hasuo,et al. Semantics of Higher-Order Quantum Computation via Geometry of Interaction , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.
[33] Chris Heunen,et al. An embedding theorem for Hilbert categories , 2008, 0811.1448.
[34] Gordon D. Plotkin,et al. Handling Algebraic Effects , 2013, Log. Methods Comput. Sci..
[35] Aaron D. Lauda. FROBENIUS ALGEBRAS AND AMBIDEXTROUS ADJUNCTIONS , 2005 .
[36] Dusko Pavlovic,et al. Quantum and Classical Structures in Nondeterminstic Computation , 2008, QI.
[37] Kenneth G. Paterson,et al. 09311 Abstracts Collection - Classical and Quantum Information Assurance Foundations and Practice , 2009, Classical and Quantum Information Assurance Foundations and Practice.
[38] Benoît Valiron,et al. Quipper: a scalable quantum programming language , 2013, PLDI.
[39] Samson Abramsky,et al. A categorical semantics of quantum protocols , 2004, LICS 2004.
[40] J. Lambek,et al. Introduction to higher order categorical logic , 1986 .
[41] Dusko Pavlovic,et al. A new description of orthogonal bases , 2008, Mathematical Structures in Computer Science.
[42] Herbert Wiklicky,et al. Operator Algebras and the Operational Semantics of Probabilistic Languages , 2006, MFCSIT.
[43] M. Andrew Moshier,et al. A Duality Theorem for Real C* Algebras , 2009, CALCO.
[44] Tommaso Toffoli,et al. Reversible Computing , 1980, ICALP.
[45] Harald Lindner. Adjunctions in monoidal categories , 1978 .
[46] C. Flori,et al. Homotopy Type Theory : Univalent Foundations of Mathematics , 2014 .
[47] Chris Hankin,et al. Quantitative Relations and Approximate Process Equivalences , 2003, CONCUR.
[48] Philip Wadler,et al. Comprehending monads , 1990, Mathematical Structures in Computer Science.
[49] Eugenio Moggi,et al. Notions of Computation and Monads , 1991, Inf. Comput..
[50] G. M. Kelly,et al. Coherence for compact closed categories , 1980 .
[51] Jonathan Grattage. A functional quantum programming language , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).
[52] Prakash Panangaden,et al. Labelled Markov Processes , 2009 .
[53] Joël Ouaknine,et al. Duality for Labelled Markov Processes , 2004, FoSSaCS.