Reversible Monadic Computing

We extend categorical semantics of monadic programming to reversible computing, by considering monoidal closed dagger categories: the dagger gives reversibility, whereas closure gives higher-order expressivity. We demonstrate that Frobenius monads model the appropriate notion of coherence between the dagger and closure by reinforcing Cayley's theorem; by proving that effectful computations (Kleisli morphisms) are reversible precisely when the monad is Frobenius; by characterizing the largest reversible subcategory of Eilenberg-Moore algebras; and by identifying the latter algebras as measurements in our leading example of quantum computing. Strong Frobenius monads are characterized internally by Frobenius monoids.

[1]  B. Jacobs,et al.  A tutorial on (co)algebras and (co)induction , 1997 .

[2]  Benoît Valiron,et al.  A Lambda Calculus for Quantum Computation with Classical Control , 2005, TLCA.

[3]  Bart Jacobs,et al.  On Block Structures in Quantum Computation , 2013, MFPS.

[4]  Dusko Pavlovic,et al.  Quantum measurements without sums , 2007 .

[5]  M. Keyl Fundamentals of quantum information theory , 2002, quant-ph/0202122.

[6]  Bart Jacobs Coalgebraic Walks, in Quantum and Turing Computation , 2011, FoSSaCS.

[7]  Bart Jacobs,et al.  Semantics of Weakening and Contraction , 1994, Ann. Pure Appl. Log..

[8]  A. Kock Strong functors and monoidal monads , 1972 .

[9]  Harvey Wolff,et al.  Monads and monoids on symmetric monoidal closed categories , 1973 .

[10]  J. Vicary Categorical Formulation of Finite-Dimensional Quantum Algebras , 2008, 0805.0432.

[11]  Dexter Kozen,et al.  Semantics of probabilistic programs , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[12]  Jaap van Oosten,et al.  The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. http: //homotopytypetheory.org/book, Institute for Advanced Study, 2013, vii + 583 pp , 2014, Bulletin of Symbolic Logic.

[13]  Michael Barr,et al.  Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.

[14]  Ohad Kammar,et al.  Handlers in action , 2013, ICFP.

[15]  Jamie Vicary,et al.  Categorical Formulation of Quantum Algebras , 2008 .

[16]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[17]  P. Aczel,et al.  Homotopy Type Theory: Univalent Foundations of Mathematics , 2013 .

[18]  Chris Heunen,et al.  Relative Frobenius algebras are groupoids , 2011, 1112.1284.

[19]  Dusko Pavlovic,et al.  Geometry of abstraction in quantum computation , 2010, Classical and Quantum Information Assurance Foundations and Practice.

[20]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[21]  Ian Mackie,et al.  Semantic Techniques in Quantum Computation , 2009 .

[22]  Alexis De Vos,et al.  Matrix Calculus for Classical and Quantum Circuits , 2014, JETC.

[23]  Bart Jacobs,et al.  Involutive Categories and Monoids, with a GNS-Correspondence , 2010, ArXiv.

[24]  Samson Abramsky,et al.  Abstract Scalars, Loops, and Free Traced and Strongly Compact Closed Categories , 2005, CALCO.

[25]  Ross Street,et al.  Frobenius monads and pseudomonoids , 2004 .

[26]  Bart Jacobs,et al.  Under Consideration for Publication in J. Functional Programming Categorical Semantics for Arrows , 2022 .

[27]  Dusko Pavlovic,et al.  Relating Toy Models of Quantum Computation: Comprehension, Complementarity and Dagger Mix Autonomous Categories , 2010, QPL@MFPS.

[28]  N. Saheb-Djahromi,et al.  CPO'S of Measures for Nondeterminism , 1980, Theor. Comput. Sci..

[29]  M. E. Szabo Algebra of proofs , 1978 .

[30]  Dan Marsden,et al.  Category Theory Using String Diagrams , 2014, ArXiv.

[31]  Ichiro Hasuo,et al.  Semantics of Higher-Order Quantum Computation via Geometry of Interaction , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[32]  This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivs 3.0 Licence. To view a copy of the licence please see: http://creativecommons.0rg/licenses/by-nc-nd/3.0/ INEQIMTES IN THE DELIVERY OF SERVICES TO A FEMALE FARM CLIENTELE: SOME~~ , 2010 .

[33]  Chris Heunen,et al.  An embedding theorem for Hilbert categories , 2008, 0811.1448.

[34]  Gordon D. Plotkin,et al.  Handling Algebraic Effects , 2013, Log. Methods Comput. Sci..

[35]  Aaron D. Lauda FROBENIUS ALGEBRAS AND AMBIDEXTROUS ADJUNCTIONS , 2005 .

[36]  Dusko Pavlovic,et al.  Quantum and Classical Structures in Nondeterminstic Computation , 2008, QI.

[37]  Kenneth G. Paterson,et al.  09311 Abstracts Collection - Classical and Quantum Information Assurance Foundations and Practice , 2009, Classical and Quantum Information Assurance Foundations and Practice.

[38]  Benoît Valiron,et al.  Quipper: a scalable quantum programming language , 2013, PLDI.

[39]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, LICS 2004.

[40]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[41]  Dusko Pavlovic,et al.  A new description of orthogonal bases , 2008, Mathematical Structures in Computer Science.

[42]  Herbert Wiklicky,et al.  Operator Algebras and the Operational Semantics of Probabilistic Languages , 2006, MFCSIT.

[43]  M. Andrew Moshier,et al.  A Duality Theorem for Real C* Algebras , 2009, CALCO.

[44]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[45]  Harald Lindner Adjunctions in monoidal categories , 1978 .

[46]  C. Flori,et al.  Homotopy Type Theory : Univalent Foundations of Mathematics , 2014 .

[47]  Chris Hankin,et al.  Quantitative Relations and Approximate Process Equivalences , 2003, CONCUR.

[48]  Philip Wadler,et al.  Comprehending monads , 1990, Mathematical Structures in Computer Science.

[49]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[50]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[51]  Jonathan Grattage A functional quantum programming language , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[52]  Prakash Panangaden,et al.  Labelled Markov Processes , 2009 .

[53]  Joël Ouaknine,et al.  Duality for Labelled Markov Processes , 2004, FoSSaCS.