A Parallel Iterative Method for Computing Molecular Absorption Spectra.

We describe a fast parallel iterative method for computing molecular absorption spectra within TDDFT linear response and using the LCAO method. We use a local basis of "dominant products" to parametrize the space of orbital products that occur in the LCAO approach. In this basis, the dynamic polarizability is computed iteratively within an appropriate Krylov subspace. The iterative procedure uses a matrix-free GMRES method to determine the (interacting) density response. The resulting code is about 1 order of magnitude faster than our previous full-matrix method. This acceleration makes the speed of our TDDFT code comparable with codes based on Casida's equation. The implementation of our method uses hybrid MPI and OpenMP parallelization in which load balancing and memory access are optimized. To validate our approach and to establish benchmarks, we compute spectra of large molecules on various types of parallel machines. The methods developed here are fairly general, and we believe they will find useful applications in molecular physics/chemistry, even for problems that are beyond TDDFT, such as organic semiconductors, particularly in photovoltaics.

[1]  Ghosh,et al.  Density-functional theory for time-dependent systems. , 1987, Physical review. A, General physics.

[2]  L. Hedin,et al.  Effects of Electron-Electron and Electron-Phonon Interactions on the One-Electron States of Solids , 1969 .

[3]  M. E. Casida Time-Dependent Density Functional Response Theory for Molecules , 1995 .

[4]  P. Suresh,et al.  Effect of the incorporation of a low-band-gap small molecule in a conjugated vinylene copolymer: PCBM blend for organic photovoltaic devices. , 2009, ACS applied materials & interfaces.

[5]  Ilse C. F. Ipsen,et al.  THE IDEA BEHIND KRYLOV METHODS , 1998 .

[6]  J. Lindsey,et al.  PhotochemCAD ‡ : A Computer‐Aided Design and Research Tool in Photochemistry , 1998 .

[7]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[8]  D. Foerster Elimination, in electronic structure calculations, of redundant orbital products. , 2008, The Journal of chemical physics.

[9]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[10]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[11]  J. D. Talman NumSBT: A subroutine for calculating spherical Bessel transforms numerically , 2009, Comput. Phys. Commun..

[12]  James S. Harris,et al.  Tables of integrals , 1998 .

[13]  Michael D. McGehee,et al.  Polymer-based solar cells , 2007 .

[14]  Dietrich Foerster,et al.  On the Kohn-Sham density response in a localized basis set. , 2009, The Journal of chemical physics.

[15]  Chris-Kriton Skylaris,et al.  On the resolution of identity Coulomb energy approximation in density functional theory , 2000 .

[16]  Gunnarsson,et al.  Product-basis method for calculating dielectric matrices. , 1994, Physical review. B, Condensed matter.

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[19]  L Greengard,et al.  Fast Algorithms for Classical Physics , 1994, Science.

[20]  M. P. Das RECENT ADVANCES IN THE DENSITY FUNCTIONAL THEORY , 1985 .

[21]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[22]  Olivier Coulaud,et al.  Fast construction of the Kohn–Sham response function for molecules , 2009, 0910.3796.

[23]  Mark E. Casida,et al.  Time-dependent density-functional theory for molecules and molecular solids , 2009 .

[24]  P. L. de Boeij Solution of the Linear-Response Equations in a Basis Set , 2006 .

[25]  Soler,et al.  Self-consistent order-N density-functional calculations for very large systems. , 1996, Physical review. B, Condensed matter.

[26]  Ralph Gebauer,et al.  turboTDDFT - A code for the simulation of molecular spectra using the Liouville-Lanczos approach to time-dependent density-functional perturbation theory , 2011, Comput. Phys. Commun..

[27]  Á. Rubio,et al.  Time-dependent density-functional theory. , 2009, Physical chemistry chemical physics : PCCP.

[28]  Ye Tao,et al.  Design and Synthesis of Alternating Regioregular Oligothiophenes/ Benzothiadiazole Copolymers for Organic Solar Cells , 2009 .

[29]  N. H. Beebe,et al.  Simplifications in the generation and transformation of two‐electron integrals in molecular calculations , 1977 .

[30]  Jochen Autschbach,et al.  Calculation of the A term of magnetic circular dichroism based on time dependent-density functional theory I. Formulation and implementation. , 2004, The Journal of chemical physics.

[31]  Matias Remes,et al.  Basics. , 1978, Cue and Cut.

[32]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[33]  Julien Langou,et al.  Algorithm 842: A set of GMRES routines for real and complex arithmetics on high performance computers , 2005, TOMS.

[34]  D. Sundholm Density functional theory calculations of the visible spectrum of chlorophyll a , 1999 .

[35]  M. Kappes,et al.  Experiment versus Time Dependent Density Functional Theory Prediction of Fullerene Electronic Absorption , 1998 .

[36]  J. D. Talman,et al.  LSFBTR: A subroutine for calculating spherical bessel transforms , 1984 .

[37]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[38]  Alan K. Thomas,et al.  Resonance Raman Spectroscopic- and Photocurrent Imaging of Polythiophene/Fullerene Solar Cells , 2010 .

[39]  L. Cederbaum,et al.  On the Cholesky decomposition for electron propagator methods: General aspects and application on C(60). , 2009, The Journal of chemical physics.

[40]  J. Crank Tables of Integrals , 1962 .

[41]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[43]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[44]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[45]  Y. Saad,et al.  Turbo charging time-dependent density-functional theory with Lanczos chains. , 2006, The Journal of chemical physics.

[46]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[47]  Evert Jan Baerends,et al.  Self-consistent molecular hartree—fock—slater calculations. IV. On electron densities, spectroscopic constants and proton affinities of some small molecules , 1976 .

[48]  Gross,et al.  Excitation energies from time-dependent density-functional theory. , 1996, Physical review letters.

[49]  L Jensen,et al.  Finite lifetime effects on the polarizability within time-dependent density-functional theory. , 2005, The Journal of chemical physics.

[50]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[51]  Daniel J. Velleman American Mathematical Monthly , 2010 .

[52]  John P. Perdew,et al.  Density Functionals for Non-relativistic Coulomb Systems in the New Century , 2003 .

[53]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .